To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’...To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.展开更多
For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u...For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u(y)√K(x-y)is in L^(2)(R^(N),R^(N)).First,we show,for a coercive function V(x),the subspace E:={u∈X^s(R^N):f_(R)^N}V(x)u^(2)dx<+∞}of X^(s)(R^(N))is embedded compactly into L^(p)(R^(N))for p\in[2,2_(s)^(*)),where 2_(s)^(*)is the fractional Sobolev critical exponent.In terms of applications,the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation-L_(k)u+V(x)u=f(x,u),x∈R^N are obtained,where-L_(K)is an integro-differential operator and V is coercive at infinity.展开更多
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling w...The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling wave solutions of this nonlinear conformable model are constructed by utilizing two powerful analytical approaches,namely,the modified auxiliary equation method and the Sardar sub-equation method.Many novel soliton solutions are extracted using these methods.Furthermore,3D surface graphs,contour plots and parametric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of symbolic software such as Mathematica.The constructed solutions will help to understand the dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.展开更多
In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <...In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <q <2_(s)^(*),and 2_(s)^(*)=6/(3-2s) is the fractional critical Sobolev exponent.In the L2-subcritical case,we show the existence of multiple normalized solutions by using the genus theory and the truncation technique;in the L^(2)-supercritical case,we obtain a couple of normalized solutions by developing a fiber map.Under both cases,to recover the loss of compactness of the energy functional caused by the doubly critical growth,we need to adopt the concentration-compactness principle.Our results complement and improve upon some existing studies on the fractional Schrodinger-Poisson system with a nonlocal critical term.展开更多
Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generator...Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.展开更多
We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global min...We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global minimum.Then,we use the variational method and some analytical techniques to obtain the existence of the positive solution of the equation whenλis small enough.展开更多
In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/...In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/N Under appropriate hypotheses on V(x),we prove that the above Choquard equation has a normalized ground state solution by utilizing variational methods.展开更多
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ...We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.展开更多
Based on the direct method of calculating the periodic wave solution proposed by Nakamura,we give an approximate analytical three-periodic solutions of Korteweg-de Vries(KdV)-type equations by perturbation method for ...Based on the direct method of calculating the periodic wave solution proposed by Nakamura,we give an approximate analytical three-periodic solutions of Korteweg-de Vries(KdV)-type equations by perturbation method for the first time.Limit methods have been used to establish the asymptotic relationships between the three-periodic solution separately and another three solutions,the soliton solution,the one-and the two-periodic solutions.Furthermore,it is found that the asymptotic three-soliton solution presents the same repulsive phenomenon as the asymptotic three-soliton solution during the interaction.展开更多
The current study examines the important class of Chebyshev’s differential equations via the application of the efficient Adomian Decomposition Method (ADM) and its modifications. We have proved the effectiveness of ...The current study examines the important class of Chebyshev’s differential equations via the application of the efficient Adomian Decomposition Method (ADM) and its modifications. We have proved the effectiveness of the employed methods by acquiring exact analytical solutions for the governing equations in most cases;while minimal noisy error terms have been observed in a particular method modification. Above all, the presented approaches have rightly affirmed the exactitude of the available literature. More to the point, the application of this methodology could be extended to examine various forms of high-order differential equations, as approximate exact solutions are rapidly attained with less computation stress.展开更多
We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data.Using the characteristic decomposition method propos...We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data.Using the characteristic decomposition method proposed by Li et al.(Commun Math Phys 267:1–12,2006),we derive a group of characteristic decompositions for the system.Using these characteristic decompositions,we find a sufficient condition on the initial data to ensure the existence of global-in-time classical solutions.展开更多
The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tens...The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tensile test, and differential scanning calorimetry. The results revealed that the recrystallized grains of the alloy after the solution treatment with hot air became smaller and more uniform, compared with solution treatment with electrical resistance. The texture of the alloy after two solution treatment methods was different. More rotated cube components were formed through solution treatment with electrical resistance, which was better for improving the drawability of the alloy. The strength of the alloy under the solution treatment with hot air was higher before stamping, because of the small uniform grains and many clusters in the matrix. The alloy solution treated with hot air also possessed good bake hardenability, because the transformation occurred on more clusters in the matrix.展开更多
We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive qua...We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive quadratic functions,the exponential and hyperbolic functions.According to the known lump solution in the outset,we obtained the superposition formulas of positive quadratic functions by plausible reasoning.Next,we constructed the interaction solutions between the localized solutions and the exponential function solutions with the similar theory.These two kinds of solutions contained superposition formulas of positive quadratic functions,which were turned into general ternary quadratic functions,the coefficients of which were all rational operation of vector inner product.Then we obtained linear superposition formulas of exponential and hyperbolic function solutions.Finally,for aforementioned various solutions,their dynamic properties were showed by choosing specific values for parameters.From concrete plots,we observed wave characteristics of three kinds of solutions.Especially,we could observe distinct generation and separation situations when the localized wave and the stripe wave interacted at different time points.展开更多
In this paper,we study the existence of infinitely many homoclinic solutions for a class of first order Hamiltonian systems ż=J H_(z)(t,z),where the Hamiltonian function H possesses the form H(t,z)=1/2L(t)z⋅z+G(t,z),a...In this paper,we study the existence of infinitely many homoclinic solutions for a class of first order Hamiltonian systems ż=J H_(z)(t,z),where the Hamiltonian function H possesses the form H(t,z)=1/2L(t)z⋅z+G(t,z),and G(t,z)is only locally defined near the origin with respect to z.Under some mild conditions on L and G,we show that the existence of a sequence of homoclinic solutions is actually a local phenomenon in some sense,which is essentially forced by the subquadraticity of G near the origin with respect to z.展开更多
In this paper,we study the global existence of BV solutions of the initial value problem for the isentropic p-system,where the state equation of the gas is given by P=Av^(-γ).Forγ>1,the general existence result f...In this paper,we study the global existence of BV solutions of the initial value problem for the isentropic p-system,where the state equation of the gas is given by P=Av^(-γ).Forγ>1,the general existence result for large initial data has not been obtained.By using the Glimm scheme,Nishida,Smoller and Diperna successively obtained the global existence results for(γ-1)TV(v_(0)(x),u_(0)(x))being small.In the present paper,by adopting a rescaling technique,we improve these results and obtain the global existence result under the condition that(γ-1)^(γ+1)(TV(v_(0)(x)))~(γ-1)(TV(u_(0)(x)))^(2) is small,which implies that,for fixedγ>1,either TV(v_(0)(x))or TV(u_(0)(x))can be arbitrarily large.展开更多
We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under som...We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under some suitable assumptions,we prove the existence of a ground state solution of the equation.Additionally,we find some sufficient conditions to guarantee the existence and nonexistence of a ground state solution of the equation.展开更多
For lower dimensional Fermi–Pasta–Ulam(FPU) chains, the α-chain is completely integrable and the Hamiltonian of the β-chain can be identified with the H′enon–Heiles Hamiltonian. When the strengths α, β of th...For lower dimensional Fermi–Pasta–Ulam(FPU) chains, the α-chain is completely integrable and the Hamiltonian of the β-chain can be identified with the H′enon–Heiles Hamiltonian. When the strengths α, β of the nonlinearities depend on time periodically with the same frequencies as the natural angular frequencies, the resonance phenomenon is inevitable. In this paper, for certain periodic functions α(t) and β(t) with resonance frequencies, we give the existence and stability of some nontrivial exact periodic solutions for a one-dimensional αβ-FPU model composed of three particles with periodic boundary conditions.展开更多
In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,br...In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,bright solitons and combined dark-bright solitons,travelling wave and periodic wave solutions with general coefficients.In our knowledge earlier reported results of the KE equation with specific coefficients.These obtained solutions are more useful in the development of optical fibers,dynamics of solitons,dynamics of adiabatic parameters,dynamics of fluid,problems of biomedical,industrial phenomena and many other branches.All calculations show that this technique is more powerful,effective,straightforward,and fruitfulness to study analytically other higher-order nonlinear complex PDEs involves in mathematical physics,quantum physics,Geo physics,fluid mechanics,hydrodynamics,mathematical biology,field of engineering and many other physical sciences.展开更多
This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
文摘To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.
基金supported by the NSFC(12261107)Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007).
文摘For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u(y)√K(x-y)is in L^(2)(R^(N),R^(N)).First,we show,for a coercive function V(x),the subspace E:={u∈X^s(R^N):f_(R)^N}V(x)u^(2)dx<+∞}of X^(s)(R^(N))is embedded compactly into L^(p)(R^(N))for p\in[2,2_(s)^(*)),where 2_(s)^(*)is the fractional Sobolev critical exponent.In terms of applications,the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation-L_(k)u+V(x)u=f(x,u),x∈R^N are obtained,where-L_(K)is an integro-differential operator and V is coercive at infinity.
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.
文摘The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling wave solutions of this nonlinear conformable model are constructed by utilizing two powerful analytical approaches,namely,the modified auxiliary equation method and the Sardar sub-equation method.Many novel soliton solutions are extracted using these methods.Furthermore,3D surface graphs,contour plots and parametric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of symbolic software such as Mathematica.The constructed solutions will help to understand the dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.
基金supported by the BIT Research and Innovation Promoting Project(2023YCXY046)the NSFC(11771468,11971027,11971061,12171497 and 12271028)+1 种基金the BNSF(1222017)the Fundamental Research Funds for the Central Universities。
文摘In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <q <2_(s)^(*),and 2_(s)^(*)=6/(3-2s) is the fractional critical Sobolev exponent.In the L2-subcritical case,we show the existence of multiple normalized solutions by using the genus theory and the truncation technique;in the L^(2)-supercritical case,we obtain a couple of normalized solutions by developing a fiber map.Under both cases,to recover the loss of compactness of the energy functional caused by the doubly critical growth,we need to adopt the concentration-compactness principle.Our results complement and improve upon some existing studies on the fractional Schrodinger-Poisson system with a nonlocal critical term.
文摘Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.
文摘We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global minimum.Then,we use the variational method and some analytical techniques to obtain the existence of the positive solution of the equation whenλis small enough.
基金Supported by National Natural Science Foundation of China(Grant Nos.11671403 and 11671236)Henan Provincial General Natural Science Foundation Project(Grant No.232300420113)National Natural Science Foundation of China Youth Foud of China Youth Foud(Grant No.12101192).
文摘In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/N Under appropriate hypotheses on V(x),we prove that the above Choquard equation has a normalized ground state solution by utilizing variational methods.
文摘We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.
基金the National National Science Foundation of China(Grant Nos.52171251,U2106225,and 52231011)the Science and Technology Innovation Fund of Dalian City(Grant No.2022JJ12GX036)。
文摘Based on the direct method of calculating the periodic wave solution proposed by Nakamura,we give an approximate analytical three-periodic solutions of Korteweg-de Vries(KdV)-type equations by perturbation method for the first time.Limit methods have been used to establish the asymptotic relationships between the three-periodic solution separately and another three solutions,the soliton solution,the one-and the two-periodic solutions.Furthermore,it is found that the asymptotic three-soliton solution presents the same repulsive phenomenon as the asymptotic three-soliton solution during the interaction.
文摘The current study examines the important class of Chebyshev’s differential equations via the application of the efficient Adomian Decomposition Method (ADM) and its modifications. We have proved the effectiveness of the employed methods by acquiring exact analytical solutions for the governing equations in most cases;while minimal noisy error terms have been observed in a particular method modification. Above all, the presented approaches have rightly affirmed the exactitude of the available literature. More to the point, the application of this methodology could be extended to examine various forms of high-order differential equations, as approximate exact solutions are rapidly attained with less computation stress.
基金supported by the National Natural Science Foundation of China(12071278).
文摘We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data.Using the characteristic decomposition method proposed by Li et al.(Commun Math Phys 267:1–12,2006),we derive a group of characteristic decompositions for the system.Using these characteristic decompositions,we find a sufficient condition on the initial data to ensure the existence of global-in-time classical solutions.
基金Project(2016YFB0300605)supported by the National Key Research and Development Program of ChinaProject(51234002)supported by the National Natural Science Foundation of China+1 种基金Project(L2013113)supported by the Liaoning Province Science and Technology,ChinaProject(N140703002)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tensile test, and differential scanning calorimetry. The results revealed that the recrystallized grains of the alloy after the solution treatment with hot air became smaller and more uniform, compared with solution treatment with electrical resistance. The texture of the alloy after two solution treatment methods was different. More rotated cube components were formed through solution treatment with electrical resistance, which was better for improving the drawability of the alloy. The strength of the alloy under the solution treatment with hot air was higher before stamping, because of the small uniform grains and many clusters in the matrix. The alloy solution treated with hot air also possessed good bake hardenability, because the transformation occurred on more clusters in the matrix.
基金the National Natural Science Foundation of China(Grant No.12061054)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region of China(Grant No.NJYT-20A06)。
文摘We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive quadratic functions,the exponential and hyperbolic functions.According to the known lump solution in the outset,we obtained the superposition formulas of positive quadratic functions by plausible reasoning.Next,we constructed the interaction solutions between the localized solutions and the exponential function solutions with the similar theory.These two kinds of solutions contained superposition formulas of positive quadratic functions,which were turned into general ternary quadratic functions,the coefficients of which were all rational operation of vector inner product.Then we obtained linear superposition formulas of exponential and hyperbolic function solutions.Finally,for aforementioned various solutions,their dynamic properties were showed by choosing specific values for parameters.From concrete plots,we observed wave characteristics of three kinds of solutions.Especially,we could observe distinct generation and separation situations when the localized wave and the stripe wave interacted at different time points.
基金The first author was supported by the National Natural Science Foundation of China(11761036,11201196)the Natural Science Foundation of Jiangxi Province(20171BAB211002)+3 种基金The second author was supported by the National Natural Science Foundation of China(11790271,12171108)the Guangdong Basic and Applied basic Research Foundation(2020A1515011019)the Innovation and Development Project of Guangzhou Universitythe Nankai Zhide Foundation。
文摘In this paper,we study the existence of infinitely many homoclinic solutions for a class of first order Hamiltonian systems ż=J H_(z)(t,z),where the Hamiltonian function H possesses the form H(t,z)=1/2L(t)z⋅z+G(t,z),and G(t,z)is only locally defined near the origin with respect to z.Under some mild conditions on L and G,we show that the existence of a sequence of homoclinic solutions is actually a local phenomenon in some sense,which is essentially forced by the subquadraticity of G near the origin with respect to z.
基金partially the NSFC(11671193)Fangqi Chen was partially the NSFC(12172166,11872201)。
文摘In this paper,we study the global existence of BV solutions of the initial value problem for the isentropic p-system,where the state equation of the gas is given by P=Av^(-γ).Forγ>1,the general existence result for large initial data has not been obtained.By using the Glimm scheme,Nishida,Smoller and Diperna successively obtained the global existence results for(γ-1)TV(v_(0)(x),u_(0)(x))being small.In the present paper,by adopting a rescaling technique,we improve these results and obtain the global existence result under the condition that(γ-1)^(γ+1)(TV(v_(0)(x)))~(γ-1)(TV(u_(0)(x)))^(2) is small,which implies that,for fixedγ>1,either TV(v_(0)(x))or TV(u_(0)(x))can be arbitrarily large.
基金supported by National Natural Science Foundation of China(11971202)Outstanding Young foundation of Jiangsu Province(BK20200042)。
文摘We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under some suitable assumptions,we prove the existence of a ground state solution of the equation.Additionally,we find some sufficient conditions to guarantee the existence and nonexistence of a ground state solution of the equation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1130110611201288+6 种基金and 11261013)the Natural Science Foundation of Guangxi Zhuang Autonomous RegionChina(Grant No.2014GXNSFBA118017)the Innovation Project of Graduate Education of Guangxi Zhuang Autonomous RegionChina(Grant No.YCSZ2014143)the Guangxi Experiment Center of Information Science(Grant No.YB1410)
文摘For lower dimensional Fermi–Pasta–Ulam(FPU) chains, the α-chain is completely integrable and the Hamiltonian of the β-chain can be identified with the H′enon–Heiles Hamiltonian. When the strengths α, β of the nonlinearities depend on time periodically with the same frequencies as the natural angular frequencies, the resonance phenomenon is inevitable. In this paper, for certain periodic functions α(t) and β(t) with resonance frequencies, we give the existence and stability of some nontrivial exact periodic solutions for a one-dimensional αβ-FPU model composed of three particles with periodic boundary conditions.
文摘In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,bright solitons and combined dark-bright solitons,travelling wave and periodic wave solutions with general coefficients.In our knowledge earlier reported results of the KE equation with specific coefficients.These obtained solutions are more useful in the development of optical fibers,dynamics of solitons,dynamics of adiabatic parameters,dynamics of fluid,problems of biomedical,industrial phenomena and many other branches.All calculations show that this technique is more powerful,effective,straightforward,and fruitfulness to study analytically other higher-order nonlinear complex PDEs involves in mathematical physics,quantum physics,Geo physics,fluid mechanics,hydrodynamics,mathematical biology,field of engineering and many other physical sciences.
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.