A three-layer model of the thermohaline structure is developed on the basis of the two -layer model of thermocline. The model is able to simulate the depth,thickness and intensity of both thermocline and halocline, an...A three-layer model of the thermohaline structure is developed on the basis of the two -layer model of thermocline. The model is able to simulate the depth,thickness and intensity of both thermocline and halocline, and the temperature and salinity of both upper layer and lower layer in the shallow seas.Camparison of simulation with data is favorable.Detailed analysis is made on a variety of factors affecting the intensity of the thermocline.展开更多
Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of press...Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.展开更多
The dynamic multichannel binocular visual image modeling is studied based on Internet of Things (IoT) Perception Layer, using mobile robot self-organizing network. By employing multigroup mobile robots with binocular ...The dynamic multichannel binocular visual image modeling is studied based on Internet of Things (IoT) Perception Layer, using mobile robot self-organizing network. By employing multigroup mobile robots with binocular visual system, the real visual images of the object will be obtained. Then through the mobile self-organizing network, a three-dimensional model is rebuilt by synthesizing the returned images. On this basis, we formalize a novel algorithm for multichannel binocular visual three-dimensional images based on fast three-dimensional modeling. Compared with the method based on single binocular visual system, the new algorithm can improve the Integrity and accuracy of the dynamic three-dimensional object modeling. The simulation results show that the new method can effectively accelerate the modeling speed, improve the similarity and not increase the data size.展开更多
To understand the physics of an ionospheric E-F valley, a new overlapping three- Chapman-layer model is developed to interpret the sounding rocket measurement in the morn- ing (sunrise) on May 7, 2011 at the Hainan ...To understand the physics of an ionospheric E-F valley, a new overlapping three- Chapman-layer model is developed to interpret the sounding rocket measurement in the morn- ing (sunrise) on May 7, 2011 at the Hainan low latitude ionospheric observation station (19.5°N, 109.1°E). From our model, the valley width, depth and height are 43.0 km, 62.9% and 121.0 km, re- spectively. From the sounding rocket observation, the valley width, depth and height are 42.2 km, 47.0% and 123.5 km, respectively. The model results are well consistent with the sounding rocket observation. The observed E-F valley at Hainan station is very wide and deep, and rapid deel- opment of the photochemical process in the ionosphere should be the underlying reason.展开更多
A neuroid BP-type three-layer mapping model is used for monthly rainfall forecasting in terms of 1946-1985Naming monthly precipitation records as basic sequences and the model has the form i×j=8×3, K=1; by s...A neuroid BP-type three-layer mapping model is used for monthly rainfall forecasting in terms of 1946-1985Naming monthly precipitation records as basic sequences and the model has the form i×j=8×3, K=1; by steadilymodifying the weighing coefficient, long-range monthly forecasts for January to December, 1986 are constructed and1986 month-to-month predictions are made based on, say, the January measurement for February rainfall and soon, with mean absolute error reaching 6,07 and 5,73 mm, respectively. Also, with a different monthly initial value forJune through September, 1994, neuroid forecasting is done,indicating the same result of the drought in Naming during the summer, an outcome that is in sharp agreement with the observation.展开更多
The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three para...The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimizing three parameters in CRS gather. The test of a sag model proved that this method is more effective and adaptable for velocity modeling of a complex geological body, and the accuracy of velocity analysis depends on the precision of optimized three parameters.展开更多
文摘A three-layer model of the thermohaline structure is developed on the basis of the two -layer model of thermocline. The model is able to simulate the depth,thickness and intensity of both thermocline and halocline, and the temperature and salinity of both upper layer and lower layer in the shallow seas.Camparison of simulation with data is favorable.Detailed analysis is made on a variety of factors affecting the intensity of the thermocline.
基金National Natural Science F oundation of China !( No.91880 10 )National Defense Science Foundation!( 95 J13 A .1.2 )
文摘Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.
基金supported by HiTech Researchand Development Program of China under Grant No.2007AA10Z235
文摘The dynamic multichannel binocular visual image modeling is studied based on Internet of Things (IoT) Perception Layer, using mobile robot self-organizing network. By employing multigroup mobile robots with binocular visual system, the real visual images of the object will be obtained. Then through the mobile self-organizing network, a three-dimensional model is rebuilt by synthesizing the returned images. On this basis, we formalize a novel algorithm for multichannel binocular visual three-dimensional images based on fast three-dimensional modeling. Compared with the method based on single binocular visual system, the new algorithm can improve the Integrity and accuracy of the dynamic three-dimensional object modeling. The simulation results show that the new method can effectively accelerate the modeling speed, improve the similarity and not increase the data size.
基金supported by National Natural Science Foundation of China(No.41274146)the Specialized Research Fund for State Key Laboratory in China
文摘To understand the physics of an ionospheric E-F valley, a new overlapping three- Chapman-layer model is developed to interpret the sounding rocket measurement in the morn- ing (sunrise) on May 7, 2011 at the Hainan low latitude ionospheric observation station (19.5°N, 109.1°E). From our model, the valley width, depth and height are 43.0 km, 62.9% and 121.0 km, re- spectively. From the sounding rocket observation, the valley width, depth and height are 42.2 km, 47.0% and 123.5 km, respectively. The model results are well consistent with the sounding rocket observation. The observed E-F valley at Hainan station is very wide and deep, and rapid deel- opment of the photochemical process in the ionosphere should be the underlying reason.
文摘A neuroid BP-type three-layer mapping model is used for monthly rainfall forecasting in terms of 1946-1985Naming monthly precipitation records as basic sequences and the model has the form i×j=8×3, K=1; by steadilymodifying the weighing coefficient, long-range monthly forecasts for January to December, 1986 are constructed and1986 month-to-month predictions are made based on, say, the January measurement for February rainfall and soon, with mean absolute error reaching 6,07 and 5,73 mm, respectively. Also, with a different monthly initial value forJune through September, 1994, neuroid forecasting is done,indicating the same result of the drought in Naming during the summer, an outcome that is in sharp agreement with the observation.
基金State Natural Science Foundation of China (49894190-024).
文摘The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimizing three parameters in CRS gather. The test of a sag model proved that this method is more effective and adaptable for velocity modeling of a complex geological body, and the accuracy of velocity analysis depends on the precision of optimized three parameters.