A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is b...A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.展开更多
Node failure is one of the most severe problems that wireless sensor and actuator networks(WSANs) have to deal with. The failure of actuator nodes, in particular, may result in substantial consequences such as network...Node failure is one of the most severe problems that wireless sensor and actuator networks(WSANs) have to deal with. The failure of actuator nodes, in particular, may result in substantial consequences such as network partitioning, incorrect and incomplete decision execution for WSANs. This paper proposes an efficient localized scheme, called LANTR, to repair the damaged topology of inter-actuator network while single actuator node paralyzes. For the failure of an ordinary actuator node, LANTR can rapidly repair the topology through relocating only one-hop neighbors of the failure node, meanwhile, keep the original topology structure as much as possible. Given the magnitude of cut vertex actuators playing on the connectivity, LANTR designs a novel method for each cut vertex to select out a specific guardian node with the minimum degree or minimum cumulative degree from its neighbors, which can reduce the repair influence on the original topology and effectively reduce the coverage loss rate. The performance of the proposed scheme is evaluated and compared with several existing representative topology repair schemes, and the results indicate that LANTR can more effectively and efficiently repair the topology of inter-actuator networks.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
A total of 3,446 publications regarding sciatic nerve injury repair and protection indexed by Web of Science during 2000-2004 were used for a detailed analysis of temporal-spatial distribu- tion characteristics. Refer...A total of 3,446 publications regarding sciatic nerve injury repair and protection indexed by Web of Science during 2000-2004 were used for a detailed analysis of temporal-spatial distribu- tion characteristics. Reference co-citation networks of the 100 top-cited publications as per the number of total citations were created using the Web of Science database and the information visualization tool, CiteSpaceIIL The key words that showed high frequency in these publications were included for analyzing the research fronts and development trends for sciatic nerve injury repair and protection. Through word frequency trend analysis, studies on bone marrow mesen- chymal stem cells, adipose-derived stem cells, and skeletal muscle-derived multipotent stem cells combined with tissue-engineered scaffold material will become the forefronts in the field of sci- atic nerve injury repair and protection in the near future.展开更多
Lower extremity nerve transposition repair has become an important treatment strategy for peripheral nerve injury;however, brain changes caused by this surgical procedure remain unclear. In this study, the distal stum...Lower extremity nerve transposition repair has become an important treatment strategy for peripheral nerve injury;however, brain changes caused by this surgical procedure remain unclear. In this study, the distal stump of the right sciatic nerve in a rat model of sciatic nerve injury was connected to the proximal end of the left sciatic nerve using a chitin conduit. Neuroelectrophysiological test showed that the right lower limb displayed nerve conduction, and the structure of myelinated nerve fibers recovered greatly. Muscle wet weight of the anterior tibialis and gastrocnemius recovered as well. Multiple-model resting-state blood oxygenation level-dependent functional magnetic resonance imaging analysis revealed functional remodeling in multiple brain regions and the re-establishment of motor and sensory functions through a new reflex arc. These findings suggest that sciatic nerve transposition repair induces brain functional remodeling. The study was approved by the Ethics Committee of Peking University People's Hospital on December 9, 2015(approval No. 2015-50).展开更多
In this paper, we investigate the effect due to the change of topology structure of network on the nonlinear dynamical behavior, by virtue of the OFC neuron evolution model with attack and repair strategy based on the...In this paper, we investigate the effect due to the change of topology structure of network on the nonlinear dynamical behavior, by virtue of the OFC neuron evolution model with attack and repair strategy based on the small world. In particular, roles of various parameters relating to the dynamical behavior are carefully studied and analyzed. In addition, the avalanche and EEC-like wave activities with attack and repair strategy are also explored in detail in this work.展开更多
In this paper we introduce a novel energy-aware routing protocol REPU (reliable, efficient with path update), which provides reliability and energy efficiency in data delivery. REPU utilizes the residual energy availa...In this paper we introduce a novel energy-aware routing protocol REPU (reliable, efficient with path update), which provides reliability and energy efficiency in data delivery. REPU utilizes the residual energy available in the nodes and the re-ceived signal strength of the nodes to identify the best possible route to the destination. Reliability is achieved by selecting a number of intermediate nodes as waypoints and the route is divided into smaller segments by the waypoints. One distinct ad-vantage of this model is that when a node on the route moves out or fails, instead of discarding the whole original route, only the two waypoint nodes of the broken segment are used to find a new path. REPU outperforms traditional schemes by establishing an energy-efficient path and also takes care of efficient route maintenance. Simulation results show that this routing scheme achieves much higher performance than the classical routing protocols, even in the presence of high node density, and overcomes simul-taneous packet forwarding.展开更多
A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a ra...A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.展开更多
The object of this review is to examine the role of TEVAR in causing SCI. The anatomy and physiology of blood flow to the spinal cord is examined. The role of auto regulation of blood flow within the spinal cord is al...The object of this review is to examine the role of TEVAR in causing SCI. The anatomy and physiology of blood flow to the spinal cord is examined. The role of auto regulation of blood flow within the spinal cord is also examined. This review examines the reported results from the scientific literature of the effect of thoracic aortic aneurysm repair on spinal cord blood flow. In the light of the-se findings several conclusions can reasonably be reached. These conclusions are that the development of SCI can reasonably be predicted based on complexity and extent of the TEVAR procedure performed and BP augmentation and CSF drainage can significantly reduce the impact of SCI.展开更多
Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution netw...Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution network rush-repair when single resource center cannot meet the emergent resource demands. A multi-resource and multi-center dispatching model is established with the objective of “the shortest repair start-time” and “the least number of the repair centers”. The optimal and worst solutions of each objective are both obtained, and a “proximity degree method” is used to calculate the optimal resource dispatching plan. The feasibility of the proposed algorithm is illustrated by an example of a distribution network fault. The proposed method provides a practical technique for efficiency improvement of fault rush-repair work of distribution network, and thus mostly abbreviates power recovery time and improves the management level of the distribution network.展开更多
This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle...This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle routing of TPSs and RCs is proposed,where the TPSs serve as emergency power supply sources,and the RCs are used to repair the faulted lines.Considering the uncertainty of traffic congestion,the probability distribution of the travel time spent on each road is derived based on the Nesterov user equilibrium model,and a two-stage stochastic program is formulated to determine the optimal routings of TPSs and RCs.To efficiently solve the proposed stochastic mixed-integer linear program(MILP),a two-phase scenario reduction method is then developed to scale down the problem size,and an adaptive progressive hedging algorithm is used for an efficient solution.The effectiveness of the proposed methods and algorithms has been illustrated in a modified IEEE 33-bus system.展开更多
Intersections and discontinuities commonly arise in surface modeling and cause problems in downstream operations. Local geometry repair, such as cover holes or replace bad surfaces by adding new surface patches for de...Intersections and discontinuities commonly arise in surface modeling and cause problems in downstream operations. Local geometry repair, such as cover holes or replace bad surfaces by adding new surface patches for dealing with inconsistencies among the confluent region, where multiple surfaces meet, is a common technique used in CAD model repair and reverse engineering. However, local geometry repair destroys the topology of original CAD model and increases the number of surface patches needed for freeform surface shape modeling. Consequently, a topology recovery technique dealing with complex freeform surface model after local geometry repair is proposed. Firstly, construct the curve network which freeform surface model; secondly, apply freeform surface fitting method determine the geometry and topology properties of recovery to create B-spline surface patches to recover the topology of trimmed ones. Corresponding to the two levels of enforcing boundary conditions on a B-spline surface, two solution schemes are presented respectively. In the first solution scheme, non-constrained B-spline surface fitting method is utilized to piecewise recover trimmed confluent surface patches and then employs global beautification technique to smoothly stitch the recovery surface patches. In the other solution scheme, constrained B-spline surface fitting technique based on discretization of boundary conditions is directly applied to recover topology of surface model after local geometry repair while achieving G~ continuity simultaneously. The presented two different schemes are applied to the consistent surface model, which consists of five trimmed confluent surface patches and a local consistent surface patch, and a machine cover model, respectively. The application results show that our topology recovery technique meets shape-preserving and Gt continuity requirements in reverse engineering. This research converts the problem of topology recovery for consistent surface model to the problem of constructing G1 patches from a given curve network, and provides a new idea to model repairing study.展开更多
Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial...Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial motoneuron, i.e., the aggregation and expression of various types of immune cells and molecules in a dynamic equilibrium, impenetrate from the start to the end of the repair of an injured facial nerve. The concept of 'immune microenvironment for facial nerve repair and regeneration', mainly concerns with the dynamic exchange between expression and regulation networks and a variaty of immune cells and immune molecules in the process of facial nerve repair and regeneration for the maintenance of a immune microenvironment favorable for nerve repair. Investigation on microglial activation and recruitment, T cell behavior, cytokine networks, and immunological cellular and molecular signaling pathways in facial nerve repair and regeneration are the current hot spots in the research on immunobiology of facial nerve injury. The current paper provides a comprehensive review of the above mentioned issues. Research of these issues will eventually make immunological interventions practicable treatments for facial nerve injury in the clinic.展开更多
A two-stage directed Semi-Markov repairable network system is presented in this paper to model the performance of many transmission systems, such as power or oil transmission network, water or gas supply network, etc....A two-stage directed Semi-Markov repairable network system is presented in this paper to model the performance of many transmission systems, such as power or oil transmission network, water or gas supply network, etc. The availability of the system is discussed by using Markov renewal theory, Laplace transform and probability analysis methods. A numerical example is given to illustrate the results obtained in the paper.展开更多
Erasure code is widely used as the redundancy scheme in distributed storage system. When a storage node fails, the repair process often requires to transfer a large amount of data. Regenerating code and hierarchical c...Erasure code is widely used as the redundancy scheme in distributed storage system. When a storage node fails, the repair process often requires to transfer a large amount of data. Regenerating code and hierarchical code are two classes of codes proposed to reduce the repair bandwidth cost. Regenerating codes reduce the amount of data transferred by each helping node, while hierarchical codes reduce the number of nodes participating in the repair process. In this paper, we propose a "sub-code nesting framework" to combine them together. The resulting regenerating hierarchical code has low repair degree as hierarchical code and lower repair cost than hierarchical code. Our code can achieve exact regeneration of the failed node, and has the additional property of low updating complexity.展开更多
All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more ef...All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more effective fault repairing methods are required.A routing and wavelength assignment method based on SDN is designed and analyzed from the perspective of service function chaining in this paper.A multi-objective integer linear programming model based on impairment-aware and scheduling time is constructed by combining the unified control of control plane with the resource allocation mode of service function virtualization.Meanwhile,an improved Firefly Algorithm is adopted to solve the model for obtaining a better scheduling scheme,so as to the resources are allocated on-demand in a more flexible and efficient way,which effectively improved the self-recovery capability of the network.In the simulation experiments,Through the comparison between the method proposed and methods based on centralization and distribution,method proposed in the paper is superior to the compared ones in the indexes of survivability,blocking probability,link recovery time,and presents a better scheduling performance,makes the system has stronger ability of self-healing in the face of failure.展开更多
文摘A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.
基金supported by the National Natural Science Foundation of China (Grant no. 61662042, 61262081, 61462053, and 61462056)partly supported by the Fundamental Research Funds for the Central Universities (Grant no. ZYGX2012J083)the Applied Fundamental Research Project of Yunnan Province (Grant no. 2014FA028)
文摘Node failure is one of the most severe problems that wireless sensor and actuator networks(WSANs) have to deal with. The failure of actuator nodes, in particular, may result in substantial consequences such as network partitioning, incorrect and incomplete decision execution for WSANs. This paper proposes an efficient localized scheme, called LANTR, to repair the damaged topology of inter-actuator network while single actuator node paralyzes. For the failure of an ordinary actuator node, LANTR can rapidly repair the topology through relocating only one-hop neighbors of the failure node, meanwhile, keep the original topology structure as much as possible. Given the magnitude of cut vertex actuators playing on the connectivity, LANTR designs a novel method for each cut vertex to select out a specific guardian node with the minimum degree or minimum cumulative degree from its neighbors, which can reduce the repair influence on the original topology and effectively reduce the coverage loss rate. The performance of the proposed scheme is evaluated and compared with several existing representative topology repair schemes, and the results indicate that LANTR can more effectively and efficiently repair the topology of inter-actuator networks.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
文摘A total of 3,446 publications regarding sciatic nerve injury repair and protection indexed by Web of Science during 2000-2004 were used for a detailed analysis of temporal-spatial distribu- tion characteristics. Reference co-citation networks of the 100 top-cited publications as per the number of total citations were created using the Web of Science database and the information visualization tool, CiteSpaceIIL The key words that showed high frequency in these publications were included for analyzing the research fronts and development trends for sciatic nerve injury repair and protection. Through word frequency trend analysis, studies on bone marrow mesen- chymal stem cells, adipose-derived stem cells, and skeletal muscle-derived multipotent stem cells combined with tissue-engineered scaffold material will become the forefronts in the field of sci- atic nerve injury repair and protection in the near future.
基金supported by the National Natural Science Foundation of China,Nos.31771322,81671215(to PXZ)the Beijing National Science Foundation,Nos.7212121(to PXZ)+6 种基金the National Key Research and Development Plan of China,No.2018YFB1105504(to PXZ)Shenzhen Science and Technology Plan Project,No.JCYJ20190806162205278(to PXZ)Sanming Project,No.SZSM202011001(to PXZ)the Fundamental Research Funds for the Central Universities,Clinical Medicine Plus X-Young Scholars Project of Peking University China,No.PKU2020LCXQ020(to YHK)the Key Laboratory of Trauma and Neural Regeneration(Peking University)the Ministry of Education China,No.BMU2019XY007-01the Ministry of Education Innovation Program of China,No.IRT_16R01。
文摘Lower extremity nerve transposition repair has become an important treatment strategy for peripheral nerve injury;however, brain changes caused by this surgical procedure remain unclear. In this study, the distal stump of the right sciatic nerve in a rat model of sciatic nerve injury was connected to the proximal end of the left sciatic nerve using a chitin conduit. Neuroelectrophysiological test showed that the right lower limb displayed nerve conduction, and the structure of myelinated nerve fibers recovered greatly. Muscle wet weight of the anterior tibialis and gastrocnemius recovered as well. Multiple-model resting-state blood oxygenation level-dependent functional magnetic resonance imaging analysis revealed functional remodeling in multiple brain regions and the re-establishment of motor and sensory functions through a new reflex arc. These findings suggest that sciatic nerve transposition repair induces brain functional remodeling. The study was approved by the Ethics Committee of Peking University People's Hospital on December 9, 2015(approval No. 2015-50).
基金The project supported by National Natural Science Foundation of China under Grant No.10675060
文摘In this paper, we investigate the effect due to the change of topology structure of network on the nonlinear dynamical behavior, by virtue of the OFC neuron evolution model with attack and repair strategy based on the small world. In particular, roles of various parameters relating to the dynamical behavior are carefully studied and analyzed. In addition, the avalanche and EEC-like wave activities with attack and repair strategy are also explored in detail in this work.
文摘In this paper we introduce a novel energy-aware routing protocol REPU (reliable, efficient with path update), which provides reliability and energy efficiency in data delivery. REPU utilizes the residual energy available in the nodes and the re-ceived signal strength of the nodes to identify the best possible route to the destination. Reliability is achieved by selecting a number of intermediate nodes as waypoints and the route is divided into smaller segments by the waypoints. One distinct ad-vantage of this model is that when a node on the route moves out or fails, instead of discarding the whole original route, only the two waypoint nodes of the broken segment are used to find a new path. REPU outperforms traditional schemes by establishing an energy-efficient path and also takes care of efficient route maintenance. Simulation results show that this routing scheme achieves much higher performance than the classical routing protocols, even in the presence of high node density, and overcomes simul-taneous packet forwarding.
文摘A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.
文摘The object of this review is to examine the role of TEVAR in causing SCI. The anatomy and physiology of blood flow to the spinal cord is examined. The role of auto regulation of blood flow within the spinal cord is also examined. This review examines the reported results from the scientific literature of the effect of thoracic aortic aneurysm repair on spinal cord blood flow. In the light of the-se findings several conclusions can reasonably be reached. These conclusions are that the development of SCI can reasonably be predicted based on complexity and extent of the TEVAR procedure performed and BP augmentation and CSF drainage can significantly reduce the impact of SCI.
文摘Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution network rush-repair when single resource center cannot meet the emergent resource demands. A multi-resource and multi-center dispatching model is established with the objective of “the shortest repair start-time” and “the least number of the repair centers”. The optimal and worst solutions of each objective are both obtained, and a “proximity degree method” is used to calculate the optimal resource dispatching plan. The feasibility of the proposed algorithm is illustrated by an example of a distribution network fault. The proposed method provides a practical technique for efficiency improvement of fault rush-repair work of distribution network, and thus mostly abbreviates power recovery time and improves the management level of the distribution network.
基金supported by National Natural Science Foundation of China(No.72171026).
文摘This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle routing of TPSs and RCs is proposed,where the TPSs serve as emergency power supply sources,and the RCs are used to repair the faulted lines.Considering the uncertainty of traffic congestion,the probability distribution of the travel time spent on each road is derived based on the Nesterov user equilibrium model,and a two-stage stochastic program is formulated to determine the optimal routings of TPSs and RCs.To efficiently solve the proposed stochastic mixed-integer linear program(MILP),a two-phase scenario reduction method is then developed to scale down the problem size,and an adaptive progressive hedging algorithm is used for an efficient solution.The effectiveness of the proposed methods and algorithms has been illustrated in a modified IEEE 33-bus system.
基金supported by China Postdoctoral Science Foundation(Grant No. 20110490376)National Natural Science Foundation of China (Grant No. 50575098)
文摘Intersections and discontinuities commonly arise in surface modeling and cause problems in downstream operations. Local geometry repair, such as cover holes or replace bad surfaces by adding new surface patches for dealing with inconsistencies among the confluent region, where multiple surfaces meet, is a common technique used in CAD model repair and reverse engineering. However, local geometry repair destroys the topology of original CAD model and increases the number of surface patches needed for freeform surface shape modeling. Consequently, a topology recovery technique dealing with complex freeform surface model after local geometry repair is proposed. Firstly, construct the curve network which freeform surface model; secondly, apply freeform surface fitting method determine the geometry and topology properties of recovery to create B-spline surface patches to recover the topology of trimmed ones. Corresponding to the two levels of enforcing boundary conditions on a B-spline surface, two solution schemes are presented respectively. In the first solution scheme, non-constrained B-spline surface fitting method is utilized to piecewise recover trimmed confluent surface patches and then employs global beautification technique to smoothly stitch the recovery surface patches. In the other solution scheme, constrained B-spline surface fitting technique based on discretization of boundary conditions is directly applied to recover topology of surface model after local geometry repair while achieving G~ continuity simultaneously. The presented two different schemes are applied to the consistent surface model, which consists of five trimmed confluent surface patches and a local consistent surface patch, and a machine cover model, respectively. The application results show that our topology recovery technique meets shape-preserving and Gt continuity requirements in reverse engineering. This research converts the problem of topology recovery for consistent surface model to the problem of constructing G1 patches from a given curve network, and provides a new idea to model repairing study.
文摘Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial motoneuron, i.e., the aggregation and expression of various types of immune cells and molecules in a dynamic equilibrium, impenetrate from the start to the end of the repair of an injured facial nerve. The concept of 'immune microenvironment for facial nerve repair and regeneration', mainly concerns with the dynamic exchange between expression and regulation networks and a variaty of immune cells and immune molecules in the process of facial nerve repair and regeneration for the maintenance of a immune microenvironment favorable for nerve repair. Investigation on microglial activation and recruitment, T cell behavior, cytokine networks, and immunological cellular and molecular signaling pathways in facial nerve repair and regeneration are the current hot spots in the research on immunobiology of facial nerve injury. The current paper provides a comprehensive review of the above mentioned issues. Research of these issues will eventually make immunological interventions practicable treatments for facial nerve injury in the clinic.
文摘A two-stage directed Semi-Markov repairable network system is presented in this paper to model the performance of many transmission systems, such as power or oil transmission network, water or gas supply network, etc. The availability of the system is discussed by using Markov renewal theory, Laplace transform and probability analysis methods. A numerical example is given to illustrate the results obtained in the paper.
基金Supported by 973 Project of China (No. 2012CB315803)Research Fund for the Doctoral Program of Higher Education of China (No. 20100002110033)Open research Fund of National Mobile Communications Research Laboratory, Southeast University (No. 2011D11)
文摘Erasure code is widely used as the redundancy scheme in distributed storage system. When a storage node fails, the repair process often requires to transfer a large amount of data. Regenerating code and hierarchical code are two classes of codes proposed to reduce the repair bandwidth cost. Regenerating codes reduce the amount of data transferred by each helping node, while hierarchical codes reduce the number of nodes participating in the repair process. In this paper, we propose a "sub-code nesting framework" to combine them together. The resulting regenerating hierarchical code has low repair degree as hierarchical code and lower repair cost than hierarchical code. Our code can achieve exact regeneration of the failed node, and has the additional property of low updating complexity.
基金supported by the National Science and Technology Major Project(No.2016ZX03001023-005)National Natural Science Foundation of China(No.61403109)+2 种基金China Postdoctoral Science Foundation(No.2019M651263)Scientific Research Fund of Heilongjiang Provincial Education Department(No.12541169)Natural Science Foundation of Heilongjiang Province(No.F2017015)。
文摘All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more effective fault repairing methods are required.A routing and wavelength assignment method based on SDN is designed and analyzed from the perspective of service function chaining in this paper.A multi-objective integer linear programming model based on impairment-aware and scheduling time is constructed by combining the unified control of control plane with the resource allocation mode of service function virtualization.Meanwhile,an improved Firefly Algorithm is adopted to solve the model for obtaining a better scheduling scheme,so as to the resources are allocated on-demand in a more flexible and efficient way,which effectively improved the self-recovery capability of the network.In the simulation experiments,Through the comparison between the method proposed and methods based on centralization and distribution,method proposed in the paper is superior to the compared ones in the indexes of survivability,blocking probability,link recovery time,and presents a better scheduling performance,makes the system has stronger ability of self-healing in the face of failure.