Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with ...Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are o...By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.展开更多
This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment ...This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.展开更多
The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, wher...The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0.展开更多
By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their...We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.展开更多
By means of continuation theorem of the coincidence degree theory, sufficient conditions are obtained for the existence of periodic solutions of a kind of third-order neutral delay functional differential equation wit...By means of continuation theorem of the coincidence degree theory, sufficient conditions are obtained for the existence of periodic solutions of a kind of third-order neutral delay functional differential equation with deviating arguments.展开更多
In this paper, we shall utilize Nevanlinna value distribution theory and normality theory to study the solvability of a certain type of functional-differential equations. We also consider the solutions of some nonline...In this paper, we shall utilize Nevanlinna value distribution theory and normality theory to study the solvability of a certain type of functional-differential equations. We also consider the solutions of some nonlinear differential equations.展开更多
In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c...In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.展开更多
Using the extension of Krasnoselskii's fixed point theorem in a cone, we prove the existence of at least one positive solution to the nonlinear nth order m-point boundary value problem with dependence on the first or...Using the extension of Krasnoselskii's fixed point theorem in a cone, we prove the existence of at least one positive solution to the nonlinear nth order m-point boundary value problem with dependence on the first order derivative. The associated Green's function for the nth order m-point boundary value problem is given, and growth conditions are imposed on the nonlinear term f which ensures the existence of at least one positive solution. A simple example is presented to illustrate applications of the obtained results.展开更多
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the second order neutral functional differential equation with constant delays o...In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the second order neutral functional differential equation with constant delays of the form (x(t)+Bx(t-δ))"+Cx'(t)+g(x(t-τ))=p(t).展开更多
In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction ...In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution, which is also its derivative pseudo almost periodic. This results are without resorting to the theory of exponential dichotomy. Furthermore, by employing the suitable Lyapunov function, some delayindependent sufficient conditions are derived for exponential convergence. The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly, two examples are given to demonstrate the validity of the proposed theoretical results.展开更多
The nonlinear vector differential equation of the sixth order with constant delay is considered in this article. New criteria for instability of the zero solution are established using the Lyapunov-Krasovskii function...The nonlinear vector differential equation of the sixth order with constant delay is considered in this article. New criteria for instability of the zero solution are established using the Lyapunov-Krasovskii functional approach and the differential inequality techniques. The result of this article improves previously known results.展开更多
This paper deals with the problems on the existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays.The author obtains some sufficient conditions wh...This paper deals with the problems on the existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays.The author obtains some sufficient conditions which ganrantee the existence and uniqueness and stability of almost periodic solutions with module containment.The results extend all the results of the paper and solve the two open problems proposed in under much weaker conditions than that proposed in.展开更多
Using the theory of coincidence degree, the authors studied the existence of periodic solutions for higher order delay functional differential equations of neutral type with restoring terms and some new results for th...Using the theory of coincidence degree, the authors studied the existence of periodic solutions for higher order delay functional differential equations of neutral type with restoring terms and some new results for the existence of periodic solutions have been obtained.展开更多
In this paper, by the theory of Fourier series, Bernoulli number theory and continu-ation theorem of coincidence degree theory, we study a kind of higher order functional differential equation with two deviating argum...In this paper, by the theory of Fourier series, Bernoulli number theory and continu-ation theorem of coincidence degree theory, we study a kind of higher order functional differential equation with two deviating arguments. Some new results on the existence of periodic solutions are obtained.展开更多
In this paper, we investigate a third-order generalized neutral functional differential equation with variable parameter. Based on Mawhin’s coincidence degree theory and some analysis skills, we obtain sufficient con...In this paper, we investigate a third-order generalized neutral functional differential equation with variable parameter. Based on Mawhin’s coincidence degree theory and some analysis skills, we obtain sufficient conditions for the existence of periodic solution for the equation. An example is also provided.展开更多
In this paper we discuss the types and criteria of nonoscillatory solutions for the fol-lowing second order neutral functional differential equation with nonpositive coefficients
基金Supported by the National Natural Science Foundation of China(11071001)Supported by the NSF of Education Bureau of Anhui Province(KJ2009A005Z,KJ2010ZD02,2010SQRL159)+1 种基金Supported by the 211 Project of Anhui University(KJTD002B)Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
基金Research supported by the National Natural Science Foundation of China(10471075)the Natural Science Foun-dation of Shandong Province of China(Y2006A04)
文摘By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.
文摘This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.
基金The Natural Science Foundation of Department ofEducation of Jiangsu Province (No06KJD110087)
文摘The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0.
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.
文摘We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.
文摘By means of continuation theorem of the coincidence degree theory, sufficient conditions are obtained for the existence of periodic solutions of a kind of third-order neutral delay functional differential equation with deviating arguments.
基金Supported by the National Natural Science Foundation of China (11171184)the Scientific ResearchFoundation of CAUC,China (2011QD10X)
文摘In this paper, we shall utilize Nevanlinna value distribution theory and normality theory to study the solvability of a certain type of functional-differential equations. We also consider the solutions of some nonlinear differential equations.
文摘In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.
基金supported by the Natural Science Foundation of Hebei Province of China (No. A2006000298)the Foundation of Hebei University of Science and Technology (No. XL2006040)
文摘Using the extension of Krasnoselskii's fixed point theorem in a cone, we prove the existence of at least one positive solution to the nonlinear nth order m-point boundary value problem with dependence on the first order derivative. The associated Green's function for the nth order m-point boundary value problem is given, and growth conditions are imposed on the nonlinear term f which ensures the existence of at least one positive solution. A simple example is presented to illustrate applications of the obtained results.
基金Supported by the National Natural Science Foundation of China(No.10371034)the Hunan Provincial Natural Science Foundation of China(05JJ40009).
文摘In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the second order neutral functional differential equation with constant delays of the form (x(t)+Bx(t-δ))"+Cx'(t)+g(x(t-τ))=p(t).
文摘In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution, which is also its derivative pseudo almost periodic. This results are without resorting to the theory of exponential dichotomy. Furthermore, by employing the suitable Lyapunov function, some delayindependent sufficient conditions are derived for exponential convergence. The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly, two examples are given to demonstrate the validity of the proposed theoretical results.
文摘The nonlinear vector differential equation of the sixth order with constant delay is considered in this article. New criteria for instability of the zero solution are established using the Lyapunov-Krasovskii functional approach and the differential inequality techniques. The result of this article improves previously known results.
文摘This paper deals with the problems on the existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays.The author obtains some sufficient conditions which ganrantee the existence and uniqueness and stability of almost periodic solutions with module containment.The results extend all the results of the paper and solve the two open problems proposed in under much weaker conditions than that proposed in.
文摘Using the theory of coincidence degree, the authors studied the existence of periodic solutions for higher order delay functional differential equations of neutral type with restoring terms and some new results for the existence of periodic solutions have been obtained.
基金Natural Science Foundation of Anhui Province (050460103)the Key Natural Science Foundation by the Bureau of Education of Anhui Province(KJ2008A05ZC).
文摘In this paper, by the theory of Fourier series, Bernoulli number theory and continu-ation theorem of coincidence degree theory, we study a kind of higher order functional differential equation with two deviating arguments. Some new results on the existence of periodic solutions are obtained.
文摘In this paper, we investigate a third-order generalized neutral functional differential equation with variable parameter. Based on Mawhin’s coincidence degree theory and some analysis skills, we obtain sufficient conditions for the existence of periodic solution for the equation. An example is also provided.
文摘In this paper we discuss the types and criteria of nonoscillatory solutions for the fol-lowing second order neutral functional differential equation with nonpositive coefficients