The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by ...The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by the change of environment and load.Due to the constant changes in these conditions,it has become very difficult to locate the optimal operating point by following a mathematical model.Therefore,this study will focus mostly on the application of Fuzzy Logic Control theory and Three-point Weight Comparison Method in effort to locate the optimal operating point of solar panel and achieve maximum efficiency in power generation. The Three-point Weight Comparison Method is the comparison between the characteristic curves of the voltage of photovoltaic array and output power;it is a rather simple way to track the maximum power.The Fuzzy Logic Control,on the other hand,can be used to solve problems that cannot be effectively dealt with by calculation rules,such as concepts,contemplation, deductive reasoning,and identification.Therefore,this paper uses these two kinds of methods to make simulation successively. The simulation results show that,the Three-point Comparison Method is more effective under the environment with more frequent change of solar radiation;however,the Fuzzy Logic Control has better tacking efficiency under the environment with violent change of solar radiation.展开更多
在风况较复杂的风力发电中,为了使风电机组充分利用风能,提高发电效率,需要一套可靠高效的最大功率点跟踪(maximum power point tracking,MPPT)策略。在研究传统方法的基础上,提出一种参数可控的变步长三点比较法改进策略。当功率变化...在风况较复杂的风力发电中,为了使风电机组充分利用风能,提高发电效率,需要一套可靠高效的最大功率点跟踪(maximum power point tracking,MPPT)策略。在研究传统方法的基础上,提出一种参数可控的变步长三点比较法改进策略。当功率变化在界定值以下时对转速采用不操作的方式抑制功率振荡;而在最大功率点附近指数倍削减步长,从而保障最大功率跟踪的精度和稳定性。控制器的参数采用经验法与华罗庚优选法选取,可满足绝大多数场合的要求。该种策略不依赖风速测量装置,经MATLAB软件仿真验证,具有良好的控制效果。展开更多
文摘The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by the change of environment and load.Due to the constant changes in these conditions,it has become very difficult to locate the optimal operating point by following a mathematical model.Therefore,this study will focus mostly on the application of Fuzzy Logic Control theory and Three-point Weight Comparison Method in effort to locate the optimal operating point of solar panel and achieve maximum efficiency in power generation. The Three-point Weight Comparison Method is the comparison between the characteristic curves of the voltage of photovoltaic array and output power;it is a rather simple way to track the maximum power.The Fuzzy Logic Control,on the other hand,can be used to solve problems that cannot be effectively dealt with by calculation rules,such as concepts,contemplation, deductive reasoning,and identification.Therefore,this paper uses these two kinds of methods to make simulation successively. The simulation results show that,the Three-point Comparison Method is more effective under the environment with more frequent change of solar radiation;however,the Fuzzy Logic Control has better tacking efficiency under the environment with violent change of solar radiation.
文摘在风况较复杂的风力发电中,为了使风电机组充分利用风能,提高发电效率,需要一套可靠高效的最大功率点跟踪(maximum power point tracking,MPPT)策略。在研究传统方法的基础上,提出一种参数可控的变步长三点比较法改进策略。当功率变化在界定值以下时对转速采用不操作的方式抑制功率振荡;而在最大功率点附近指数倍削减步长,从而保障最大功率跟踪的精度和稳定性。控制器的参数采用经验法与华罗庚优选法选取,可满足绝大多数场合的要求。该种策略不依赖风速测量装置,经MATLAB软件仿真验证,具有良好的控制效果。