The regulated pollutants (CO,HC and NOx) and unregulated pollutants (volatile organic compounds and carbonyl compounds),emitted from a dual fuel vehicle fueled with gasoline and E10 fuel,are measured under a trans...The regulated pollutants (CO,HC and NOx) and unregulated pollutants (volatile organic compounds and carbonyl compounds),emitted from a dual fuel vehicle fueled with gasoline and E10 fuel,are measured under a transient cycle and steady modes.The impacts of a three-way catalyst (TWC) are investigated for the two types of fuels.The measured results show that NOx and acetaldehyde emitted from the E10-fueled car are much more than that from the gasoline-fueled car under the same modes.On the basis of maximum incremental reactivity (MIR) factors and emissions of organic gases,the ozone specific reactivity of the tailpipe gases are evaluated.展开更多
The three way catalysts (TWCs) promoters (Ce Zr)O 2, (Pr Ce Zr)O 2 and (Pr Zr)O 2 were prepared by sol gel like method. They were characterized by XRD, EXAFS and BET surface area determination. The reduction ...The three way catalysts (TWCs) promoters (Ce Zr)O 2, (Pr Ce Zr)O 2 and (Pr Zr)O 2 were prepared by sol gel like method. They were characterized by XRD, EXAFS and BET surface area determination. The reduction features of the promoters were measured by temperature programmed reduction (TPR) of H 2 to access the potential for the promoters containing praseodymia as oxygen storage component in three way catalyst. The (Pr Zr)O 2 cubic solid solution is formed at high temperature up to 800 ℃, which makes it more reducible than the (Ce Zr)O 2 solid solution. For the (Pr Ce Zr)O 2 samples, the ternary solid solution plays an important role in the reduction process. The performance of the three way catalysts with fully formulated Pt, Pd and Rh is proceeded by using both light off temperature under a stoichiometric gas composition and the conversion of CO, C 3H 6 and NO under changing air/fuel ratio at a constant reaction temperature 400 ℃ . The results indicate that a small amount of praseodymia doping into (Ce Zr)O 2 favors the light off temperature of C 3H 6 and NO, and all the catalysts containing praseodymia obviously exhibits enhanced width of S value for NO conversion at lean region ( S ≥1.00).展开更多
The noble metals (Pt, Pd, Rh) supported on Cu-Ce mixed oxides with γ-Al2O3 washcoat/FeCrAl substrate were investigated as catalytic performance of Three Way Catalysts (TWC) under simulated automotive exhaust feed gas...The noble metals (Pt, Pd, Rh) supported on Cu-Ce mixed oxides with γ-Al2O3 washcoat/FeCrAl substrate were investigated as catalytic performance of Three Way Catalysts (TWC) under simulated automotive exhaust feed gas. The structural, morphological features and catalytic activity were observed by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and GC-TCD (Varian CP-4900). The catalytic performance of noble metals (Pt, Rh, Pd) supported on Cu-Ce mixed oxides with γ-Al2O3 washcoat/FeCrAl substrate was be compared with noble metals (Pt, Rh, Pd) supported on Ce-Zr mixed oxides with γ-Al2O3 washcoat/FeCrAl substrate and only γ-Al2O3 washcoat/FeCrAl substrate at various stoichiometric ratio of oxygen. The results showed that the addition of Cu-Ce mixed oxides improved CO oxidation reaction at lower temperature during stable lambda of 1, the highest CO conversion of 99% is observed for the noble metals (Pt, Pd, Rh) support on Cu-Ce with γ-Al2O3 washcoat/FeCrAl substrate. The results also showed that, the addition of Cu-Ce mixed oxides promoted released oxygen, thus it improved strongly CO and C3H8 conversion at lean oxygen stoichiometric operation.展开更多
The effect of BaO doping to the Pt-Rh catalysts on its three-way catalytic activity and water-gas transfer was investigated. The results show that the light-off temperatures of hydrocarbon and carbon monoxide and nitr...The effect of BaO doping to the Pt-Rh catalysts on its three-way catalytic activity and water-gas transfer was investigated. The results show that the light-off temperatures of hydrocarbon and carbon monoxide and nitrogen oxides have little difference in the fresh catalysts. But after the hydrothermal-aged 5 h at 1000 ℃, the catalysts containing CeO2-ZrO2-BaO has lower light-off temperature and better catalytic activity than the catalysts containing BaO and CeO2-ZrO2,展开更多
Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Z...Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Zr0.5Ti0.5Al0.5O2 catalysts was evaluated using the simulated gases. The results show that ZTA samples exhibit higher specific surface area,larger pore volume and proper surface acidic amount and acidity in comparison with ZT. The results of the catalytic test indicate that Pt/ZT and Pt/ZTA catalysts exhibit excellent low-temperature catalytic activity and lower light-off temperatures of hydrocarbon,carbon monoxide and nitrogen oxides,especially better conversion for nitrogen oxides (NOx). The addition of Al2O3 into ZT enhanced the anti-aging property of Pt/ ZTA catalysts due to the excellent textural,structural,surface acidity and thermal stability.展开更多
基金Sponsored by the National Natural Science Foundation of China (40805053)
文摘The regulated pollutants (CO,HC and NOx) and unregulated pollutants (volatile organic compounds and carbonyl compounds),emitted from a dual fuel vehicle fueled with gasoline and E10 fuel,are measured under a transient cycle and steady modes.The impacts of a three-way catalyst (TWC) are investigated for the two types of fuels.The measured results show that NOx and acetaldehyde emitted from the E10-fueled car are much more than that from the gasoline-fueled car under the same modes.On the basis of maximum incremental reactivity (MIR) factors and emissions of organic gases,the ozone specific reactivity of the tailpipe gases are evaluated.
文摘The three way catalysts (TWCs) promoters (Ce Zr)O 2, (Pr Ce Zr)O 2 and (Pr Zr)O 2 were prepared by sol gel like method. They were characterized by XRD, EXAFS and BET surface area determination. The reduction features of the promoters were measured by temperature programmed reduction (TPR) of H 2 to access the potential for the promoters containing praseodymia as oxygen storage component in three way catalyst. The (Pr Zr)O 2 cubic solid solution is formed at high temperature up to 800 ℃, which makes it more reducible than the (Ce Zr)O 2 solid solution. For the (Pr Ce Zr)O 2 samples, the ternary solid solution plays an important role in the reduction process. The performance of the three way catalysts with fully formulated Pt, Pd and Rh is proceeded by using both light off temperature under a stoichiometric gas composition and the conversion of CO, C 3H 6 and NO under changing air/fuel ratio at a constant reaction temperature 400 ℃ . The results indicate that a small amount of praseodymia doping into (Ce Zr)O 2 favors the light off temperature of C 3H 6 and NO, and all the catalysts containing praseodymia obviously exhibits enhanced width of S value for NO conversion at lean region ( S ≥1.00).
文摘The noble metals (Pt, Pd, Rh) supported on Cu-Ce mixed oxides with γ-Al2O3 washcoat/FeCrAl substrate were investigated as catalytic performance of Three Way Catalysts (TWC) under simulated automotive exhaust feed gas. The structural, morphological features and catalytic activity were observed by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and GC-TCD (Varian CP-4900). The catalytic performance of noble metals (Pt, Rh, Pd) supported on Cu-Ce mixed oxides with γ-Al2O3 washcoat/FeCrAl substrate was be compared with noble metals (Pt, Rh, Pd) supported on Ce-Zr mixed oxides with γ-Al2O3 washcoat/FeCrAl substrate and only γ-Al2O3 washcoat/FeCrAl substrate at various stoichiometric ratio of oxygen. The results showed that the addition of Cu-Ce mixed oxides improved CO oxidation reaction at lower temperature during stable lambda of 1, the highest CO conversion of 99% is observed for the noble metals (Pt, Pd, Rh) support on Cu-Ce with γ-Al2O3 washcoat/FeCrAl substrate. The results also showed that, the addition of Cu-Ce mixed oxides promoted released oxygen, thus it improved strongly CO and C3H8 conversion at lean oxygen stoichiometric operation.
文摘The effect of BaO doping to the Pt-Rh catalysts on its three-way catalytic activity and water-gas transfer was investigated. The results show that the light-off temperatures of hydrocarbon and carbon monoxide and nitrogen oxides have little difference in the fresh catalysts. But after the hydrothermal-aged 5 h at 1000 ℃, the catalysts containing CeO2-ZrO2-BaO has lower light-off temperature and better catalytic activity than the catalysts containing BaO and CeO2-ZrO2,
文摘Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Zr0.5Ti0.5Al0.5O2 catalysts was evaluated using the simulated gases. The results show that ZTA samples exhibit higher specific surface area,larger pore volume and proper surface acidic amount and acidity in comparison with ZT. The results of the catalytic test indicate that Pt/ZT and Pt/ZTA catalysts exhibit excellent low-temperature catalytic activity and lower light-off temperatures of hydrocarbon,carbon monoxide and nitrogen oxides,especially better conversion for nitrogen oxides (NOx). The addition of Al2O3 into ZT enhanced the anti-aging property of Pt/ ZTA catalysts due to the excellent textural,structural,surface acidity and thermal stability.