D braiding technology has stimulated a great deal of interest in the world at large and been widely used in aerospace, military, civil construction and medical fields. Although 3 D braided composites have many good f...D braiding technology has stimulated a great deal of interest in the world at large and been widely used in aerospace, military, civil construction and medical fields. Although 3 D braided composites have many good features, their features are very complicated. Optic fiber sensors can be multi braided into 3 D braided composites to fulfill a new kind of 3 D smart composites to monitor RTM process, study mechanical behaviors and damage states after molding, and monitor its own condition during service life. Since optic performances of optic fibers have direct and important relation to the performances of optic fiber sensors, experimental research is done to devise a method to incorporate the optic fiber into a 3 D structure. The optical performances of the braided optic fibers are tested and compared with the original one to study the optic performances of optic fibers, before their being braided into composites and after the RTM process.展开更多
This paper aims to find the relationship between the structural parameters and the radial stiffness of the braided stent and to understand the stress distribution law of the wires. According to the equation of the spa...This paper aims to find the relationship between the structural parameters and the radial stiffness of the braided stent and to understand the stress distribution law of the wires. According to the equation of the space spiral curve, a three-dimensional parametrical geometrical model is constructed. The finite element model is built by using the beam-beam contact elements and 3D beam elements. The constituent nitinol wires are assumed to be linear elastic material. The finite element analysis figures out that the radial stiffness of the stent and the stress distribution of the wires are influenced by all the structural parameters. The helix pitch of the wires is the most important factor. Under the condition of the same load and other structural parameters remaining unchanged, when the number of wires is 24, the stress of the wire crosssection is at the minimum. A comparison between the vitro experimental results and the analytical results is conducted, and the data is consistent, which proves that the current finite element model can be used to appropriately predict the mechanical performance of the braided esophageal stents.展开更多
As an advanced composite material, the 3D braided composite has received more and more attention in foreign countries. However, it has received less attention in China. The geometric unit cell which can describe the b...As an advanced composite material, the 3D braided composite has received more and more attention in foreign countries. However, it has received less attention in China. The geometric unit cell which can describe the basic structure and the relationship between the braiding angle and geometric parameters of the fabric and fiber volume ratio are given in this paper based on two 3D braiding processes, namely, the four-step and the twostep ones. Several existing mechanical models to predict groperties of the 3D braided comPOsites are discussed and their shortcomings are pointed out herein. Then a new model called the inclined laminal combination model is proposed, which is based on the classical laminated plate theory and can predict the basic mechanical behavior of the two 3D braided composites with four-step or two-step braid. In the model, each yarn in the unit cell is regarded as an inclined laminate and then a 3D analysis is performed. It is found that the predicted mechanical properties of the 3D braided composites by the proposed model are compared well with the experimental data.展开更多
The question of how the category of entwined modules can be made into a braided monoidal category is studied. First, the sufficient and necessary conditions making the category into a monoidal category are obtained by...The question of how the category of entwined modules can be made into a braided monoidal category is studied. First, the sufficient and necessary conditions making the category into a monoidal category are obtained by using the fact that if (A, C, ψ) is an entwining structure, then A × C can be made into an entwined module. The conditions are that the algebra and coalgebra in question are both bialgebras with some extra compatibility relations. Then given a monodial category of entwined modules, the braiding is constructed by means of a twisted convolution invertible map Q, and the conditions making the category form into a braided monoidal category are obtained similarly. Finally, the construction is applied to the category of Doi-Hopf modules and (α, β )-Yetter-Drinfeld modules as examples.展开更多
It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On th...It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On the basis of new microstructure model of braided composites proposed recently, the model of FEM calculation for thermal conductivity of 3-dimennsional and 4-directional braided composites is set up in this paper. The curves of coefficient of effective thermal conductivity versus fiber volume ratio and interior braiding angle are obtained. Furthermore, comparing the results of FEM with the available experimental data, the reasonability and veracity of calculation are confirmed at the same time.展开更多
The yarn architecture of 3-D braided composites products by the four-step 1×1 braiding technique has been studied by means of a control volume method in conjunction with experimental investigation and a numerical...The yarn architecture of 3-D braided composites products by the four-step 1×1 braiding technique has been studied by means of a control volume method in conjunction with experimental investigation and a numerical method, respectively. An ellipse assumption for the cross-section of yarn was proposed in this analysis method with considering the yarn size and yarn-packing factor. Two types of local unit cell structures were identified for 4-step braided composites by considering the nature of the braiding processes and by observing the sample cross-sections. The relationship between the braiding procedure and the properties for 3-D braided structural shapes was established. This method provides the basis for analyzing stiffness and strength of 3-D braided composites.展开更多
3D braided composite technology has stimulated a great deal of interest in the world at large. But due to the three-dimensional nature of these kinds of composites, coupled with the shortcomings of currently-adopted e...3D braided composite technology has stimulated a great deal of interest in the world at large. But due to the three-dimensional nature of these kinds of composites, coupled with the shortcomings of currently-adopted experimental test methods, it is difficult to measure the internal parameters of this materials, hence causes it difficult to understand the material performance. A new method is introduced herein to measure the internal strain of braided composite materials using co-braided fiber optic sensors. Two kinds of fiber optic sensors are co-braided into 3D braided composites to measure internal strain. One of these is the Fabry-Parrot (F-P) fiber optic sensor; the other is the polarimetric fiber optic sensor. Experiments are conducted to measure internal strain under tension, bending and thermal environments in the 3D carbon fiber braided composite specimens, both locally and globally. Experimental results show that multiple fiber optic sensors can be braided into the 3D braided composites to measure the internal parameters, providing a more accurate measurement method and leading to a better understanding of these materials.展开更多
A certain pattern of channel is the product of its self-adjustment under given boundary, discharge and sediment conditions. Based upon the principle of process-response model, an experimental study with 18 runs is car...A certain pattern of channel is the product of its self-adjustment under given boundary, discharge and sediment conditions. Based upon the principle of process-response model, an experimental study with 18 runs is carried out in LESRC. This paper is focused on the variation of the energy dissipation versus the channel morphology during and after the bedmaking process of braided channel. The results show that there exists a good empirical relationship between the energy dissipation rate and channel morphology. According to this relationship and the theory of minimum rate of energy dissipation, the authors explain the metamorphosis of the model channel with the development of the braided river.展开更多
Let (C, C) be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category (C, C) is investigated. First, a braided C2-commutative algebra i...Let (C, C) be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category (C, C) is investigated. First, a braided C2-commutative algebra in the category (C, C) is defined and three equations on the braiding in the category (C, C) are proved. Secondly, it is verified that (A, [, ] ) is a left (strict) Jacobi braided Lie algebra if and only if (A, [, ] ) is a braided Lie algebra, where A is an associative algebra in the category (C, C). Finally, as an application, the structures of braided Lie algebras are given in the category of Yetter-Drinfel'd modules and the category of Hopf bimodules.展开更多
First, we present semisimple properties of twisted products by means of constructing an algebra isomorphism between twisted products and crossed products, and point out that there exist some relations among braided bi...First, we present semisimple properties of twisted products by means of constructing an algebra isomorphism between twisted products and crossed products, and point out that there exist some relations among braided bialgebras, paired bialgebras and Yang-Baxter coalgebras. Furthermore, we give an example to illustrate these relations by using Sweedler's 4-dimensional Hopf algebra. Finally, from starting off with Yang-Baxter coalgebras, we can construct some quadratic bialgebras such that they are braided bialgebras.展开更多
A biodegradable nerve regeneration conduit has been developed by the regular braided technique on a spindle-braiding machine. The geometry property indexes of braided nerve conduit consist of pitch, density, wall thic...A biodegradable nerve regeneration conduit has been developed by the regular braided technique on a spindle-braiding machine. The geometry property indexes of braided nerve conduit consist of pitch, density, wall thickness and porosity etc. In this article, the influences of the braiding parameters i.e. the linear density of yarn, gear ratio and spindle number of the braiding machine on these geometry property indexes of nerve conduit were discussed from which the optimal braiding parameters were obtained.展开更多
The long-term creep behavior of polymer-matrix 3-D braided composites was studied by using the tensile creep test method, and the effect of braiding structure, braiding angle and fiber volume fraction were discussed. ...The long-term creep behavior of polymer-matrix 3-D braided composites was studied by using the tensile creep test method, and the effect of braiding structure, braiding angle and fiber volume fraction were discussed. The creep curve appears as expected, and can be defined two phases, namely, the primary phase and the secondary phase. For each sample, strain increases with time rapidly, and then the strain rate decreases and appears to approach a constant rate of change (steady-state creep). The experiment results show that the creep resistant properties are improved while the braiding angle decreases or the fiber volume fraction increases, and that the five-directional braiding structure offers better creep resistant properties than the four-directional braiding structure.展开更多
This study proposed a new yarn-like strain sensor on the basis of the braided skin-core rope,and investigated the effect of braiding structures on the sensing properties of sensors.The morphology and electromechanical...This study proposed a new yarn-like strain sensor on the basis of the braided skin-core rope,and investigated the effect of braiding structures on the sensing properties of sensors.The morphology and electromechanical properties of the strain sensor with different braiding structures were compared and evaluated.The results show that the sensing performance of the sensor from a braided skin-core rope depends on both the number of yarns in braiding and the metallized process of braided rope.Generally,the present stretchable skin-core rope-based sensor provides a basis for the formation of a highly sensitive sensing structure.展开更多
This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensio...This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.展开更多
In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential ro...In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential role in areas of sparse well coverage.We describe sedimentary facies characteristics,sand body planforms,width and connectivity patterns of sand bodies,and vertical associations and successions by acoustic impedance inversion technology and sedimentological theory.Results of our study show braided fluvial strata deposits in the Jurassic Badaowan formation.Each sand body is approximately lenticular in shape.The width of each sand body falls in the range 100~800 m,with most between 200 and 400 m.The sand bodies vary in thickness from 4 to 13 m,with most below 9 m.The width/thickness ratios lie in the range 20~55.The connectivity of braided fluvial channel sand bodies is controlled by changes of accommodation space.One fining-upward sedimentary cycle of base-level rise is recognized in Badaowan formation,representing an upward rise of base level.The connectivity of sand bodies was found to be greatest in the early stage of base-level rise,becoming progressively worse with increasing base-level rise.展开更多
The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In...The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.展开更多
The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental mod...The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.展开更多
Improved Resin Transfer Molding (RTM) technology and equipment were established.Void content and morphology of the 3-D braided preform/phenolic composite were investigated using different RTM processes.The results sho...Improved Resin Transfer Molding (RTM) technology and equipment were established.Void content and morphology of the 3-D braided preform/phenolic composite were investigated using different RTM processes.The results showed that void content of the vacuum and compression co-assisted RTM process was the lowest.Void morphologies of the specimen cross-section were analyzed with metallographic microscope.In traditional RTM process,the crack of cross-section was in evidence.In vacuum assisted RTM process,the void shape was divided into three categories:irregular crack,triangle,rotundity and ellipse.The most voids distributed in resin rich areas and were observed as large void based on equivalent diameter.In compression assisted RTM,vacuum and compression co-assisted RTM process,the polygonal voids mostly existed inter tows.Void size was mainly intermediate and small based equivalent diameter separately.展开更多
Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture ...Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.展开更多
文摘D braiding technology has stimulated a great deal of interest in the world at large and been widely used in aerospace, military, civil construction and medical fields. Although 3 D braided composites have many good features, their features are very complicated. Optic fiber sensors can be multi braided into 3 D braided composites to fulfill a new kind of 3 D smart composites to monitor RTM process, study mechanical behaviors and damage states after molding, and monitor its own condition during service life. Since optic performances of optic fibers have direct and important relation to the performances of optic fiber sensors, experimental research is done to devise a method to incorporate the optic fiber into a 3 D structure. The optical performances of the braided optic fibers are tested and compared with the original one to study the optic performances of optic fibers, before their being braided into composites and after the RTM process.
基金The National Natural Science Foundation of China(No.51005124)the Opening Foundation of Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments(No.JS-NB-2009-1-1)
文摘This paper aims to find the relationship between the structural parameters and the radial stiffness of the braided stent and to understand the stress distribution law of the wires. According to the equation of the space spiral curve, a three-dimensional parametrical geometrical model is constructed. The finite element model is built by using the beam-beam contact elements and 3D beam elements. The constituent nitinol wires are assumed to be linear elastic material. The finite element analysis figures out that the radial stiffness of the stent and the stress distribution of the wires are influenced by all the structural parameters. The helix pitch of the wires is the most important factor. Under the condition of the same load and other structural parameters remaining unchanged, when the number of wires is 24, the stress of the wire crosssection is at the minimum. A comparison between the vitro experimental results and the analytical results is conducted, and the data is consistent, which proves that the current finite element model can be used to appropriately predict the mechanical performance of the braided esophageal stents.
文摘As an advanced composite material, the 3D braided composite has received more and more attention in foreign countries. However, it has received less attention in China. The geometric unit cell which can describe the basic structure and the relationship between the braiding angle and geometric parameters of the fabric and fiber volume ratio are given in this paper based on two 3D braiding processes, namely, the four-step and the twostep ones. Several existing mechanical models to predict groperties of the 3D braided comPOsites are discussed and their shortcomings are pointed out herein. Then a new model called the inclined laminal combination model is proposed, which is based on the classical laminated plate theory and can predict the basic mechanical behavior of the two 3D braided composites with four-step or two-step braid. In the model, each yarn in the unit cell is regarded as an inclined laminate and then a 3D analysis is performed. It is found that the predicted mechanical properties of the 3D braided composites by the proposed model are compared well with the experimental data.
基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20060286006)the National Natural Science Founda-tion of China(No.10571026)
文摘The question of how the category of entwined modules can be made into a braided monoidal category is studied. First, the sufficient and necessary conditions making the category into a monoidal category are obtained by using the fact that if (A, C, ψ) is an entwining structure, then A × C can be made into an entwined module. The conditions are that the algebra and coalgebra in question are both bialgebras with some extra compatibility relations. Then given a monodial category of entwined modules, the braiding is constructed by means of a twisted convolution invertible map Q, and the conditions making the category form into a braided monoidal category are obtained similarly. Finally, the construction is applied to the category of Doi-Hopf modules and (α, β )-Yetter-Drinfeld modules as examples.
基金Aeronautical Science Foundation of China (04B51045)
文摘It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On the basis of new microstructure model of braided composites proposed recently, the model of FEM calculation for thermal conductivity of 3-dimennsional and 4-directional braided composites is set up in this paper. The curves of coefficient of effective thermal conductivity versus fiber volume ratio and interior braiding angle are obtained. Furthermore, comparing the results of FEM with the available experimental data, the reasonability and veracity of calculation are confirmed at the same time.
基金Aeronautical Science Foundation of China ( 99B2 3 0 0 1)
文摘The yarn architecture of 3-D braided composites products by the four-step 1×1 braiding technique has been studied by means of a control volume method in conjunction with experimental investigation and a numerical method, respectively. An ellipse assumption for the cross-section of yarn was proposed in this analysis method with considering the yarn size and yarn-packing factor. Two types of local unit cell structures were identified for 4-step braided composites by considering the nature of the braiding processes and by observing the sample cross-sections. The relationship between the braiding procedure and the properties for 3-D braided structural shapes was established. This method provides the basis for analyzing stiffness and strength of 3-D braided composites.
基金The writers acknowledge the support of the National Natural Science Foundation of China(No:59905021)Aeronautic Science Foundation of China(01G52075)Outstanding Youth Founda tion of Jiangsu Province(No.BK2002416).
文摘3D braided composite technology has stimulated a great deal of interest in the world at large. But due to the three-dimensional nature of these kinds of composites, coupled with the shortcomings of currently-adopted experimental test methods, it is difficult to measure the internal parameters of this materials, hence causes it difficult to understand the material performance. A new method is introduced herein to measure the internal strain of braided composite materials using co-braided fiber optic sensors. Two kinds of fiber optic sensors are co-braided into 3D braided composites to measure internal strain. One of these is the Fabry-Parrot (F-P) fiber optic sensor; the other is the polarimetric fiber optic sensor. Experiments are conducted to measure internal strain under tension, bending and thermal environments in the 3D carbon fiber braided composite specimens, both locally and globally. Experimental results show that multiple fiber optic sensors can be braided into the 3D braided composites to measure the internal parameters, providing a more accurate measurement method and leading to a better understanding of these materials.
基金Joint project by National Natural Science Foundation of China and Ministry of Water Resources of China No. 59890200 the incenti
文摘A certain pattern of channel is the product of its self-adjustment under given boundary, discharge and sediment conditions. Based upon the principle of process-response model, an experimental study with 18 runs is carried out in LESRC. This paper is focused on the variation of the energy dissipation versus the channel morphology during and after the bedmaking process of braided channel. The results show that there exists a good empirical relationship between the energy dissipation rate and channel morphology. According to this relationship and the theory of minimum rate of energy dissipation, the authors explain the metamorphosis of the model channel with the development of the braided river.
基金The National Natural Science Foundation of China(No.10871042)
文摘Let (C, C) be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category (C, C) is investigated. First, a braided C2-commutative algebra in the category (C, C) is defined and three equations on the braiding in the category (C, C) are proved. Secondly, it is verified that (A, [, ] ) is a left (strict) Jacobi braided Lie algebra if and only if (A, [, ] ) is a braided Lie algebra, where A is an associative algebra in the category (C, C). Finally, as an application, the structures of braided Lie algebras are given in the category of Yetter-Drinfel'd modules and the category of Hopf bimodules.
文摘First, we present semisimple properties of twisted products by means of constructing an algebra isomorphism between twisted products and crossed products, and point out that there exist some relations among braided bialgebras, paired bialgebras and Yang-Baxter coalgebras. Furthermore, we give an example to illustrate these relations by using Sweedler's 4-dimensional Hopf algebra. Finally, from starting off with Yang-Baxter coalgebras, we can construct some quadratic bialgebras such that they are braided bialgebras.
文摘A biodegradable nerve regeneration conduit has been developed by the regular braided technique on a spindle-braiding machine. The geometry property indexes of braided nerve conduit consist of pitch, density, wall thickness and porosity etc. In this article, the influences of the braiding parameters i.e. the linear density of yarn, gear ratio and spindle number of the braiding machine on these geometry property indexes of nerve conduit were discussed from which the optimal braiding parameters were obtained.
文摘The long-term creep behavior of polymer-matrix 3-D braided composites was studied by using the tensile creep test method, and the effect of braiding structure, braiding angle and fiber volume fraction were discussed. The creep curve appears as expected, and can be defined two phases, namely, the primary phase and the secondary phase. For each sample, strain increases with time rapidly, and then the strain rate decreases and appears to approach a constant rate of change (steady-state creep). The experiment results show that the creep resistant properties are improved while the braiding angle decreases or the fiber volume fraction increases, and that the five-directional braiding structure offers better creep resistant properties than the four-directional braiding structure.
基金Biomedical Textile Material Science and Technology,China(111 Project)(No.B07024)
文摘This study proposed a new yarn-like strain sensor on the basis of the braided skin-core rope,and investigated the effect of braiding structures on the sensing properties of sensors.The morphology and electromechanical properties of the strain sensor with different braiding structures were compared and evaluated.The results show that the sensing performance of the sensor from a braided skin-core rope depends on both the number of yarns in braiding and the metallized process of braided rope.Generally,the present stretchable skin-core rope-based sensor provides a basis for the formation of a highly sensitive sensing structure.
文摘This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.
基金Financial support for this work,provided by the National Basic Research Program of China(No.2006 CB202300),
文摘In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential role in areas of sparse well coverage.We describe sedimentary facies characteristics,sand body planforms,width and connectivity patterns of sand bodies,and vertical associations and successions by acoustic impedance inversion technology and sedimentological theory.Results of our study show braided fluvial strata deposits in the Jurassic Badaowan formation.Each sand body is approximately lenticular in shape.The width of each sand body falls in the range 100~800 m,with most between 200 and 400 m.The sand bodies vary in thickness from 4 to 13 m,with most below 9 m.The width/thickness ratios lie in the range 20~55.The connectivity of braided fluvial channel sand bodies is controlled by changes of accommodation space.One fining-upward sedimentary cycle of base-level rise is recognized in Badaowan formation,representing an upward rise of base level.The connectivity of sand bodies was found to be greatest in the early stage of base-level rise,becoming progressively worse with increasing base-level rise.
基金Funded by the National Basic Research Program of Chinathe National Natural Science Foundation of China(51675266)+3 种基金the Aeronautical Science Foundation of China(2014ZB52024)the Fundamental Research Funds for the Central Universities(NJ20160038)the Jiangsu Innovation Program for Graduate Education(CXLX13_165)the Fundamental Research Funds for the Central Universities
文摘The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.
基金Tianjin Municipal Science and Technologies Commission,China(Nos.10SYSYJC27800,1ZCKFSF00500)
文摘The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.
基金Tianjin Natural Science Foundation of China(No.06YFJ MJC03100,08JCZDJC24500)
文摘Improved Resin Transfer Molding (RTM) technology and equipment were established.Void content and morphology of the 3-D braided preform/phenolic composite were investigated using different RTM processes.The results showed that void content of the vacuum and compression co-assisted RTM process was the lowest.Void morphologies of the specimen cross-section were analyzed with metallographic microscope.In traditional RTM process,the crack of cross-section was in evidence.In vacuum assisted RTM process,the void shape was divided into three categories:irregular crack,triangle,rotundity and ellipse.The most voids distributed in resin rich areas and were observed as large void based on equivalent diameter.In compression assisted RTM,vacuum and compression co-assisted RTM process,the polygonal voids mostly existed inter tows.Void size was mainly intermediate and small based equivalent diameter separately.
基金supported by the National Science and Technology Major Project(Grant No.2017ZX05008-006004-002)the National Natural Science Foundation of China(Grant Nos.41502126 and 41902155)the Open Foundation of Top Disciplines in Yangtze University(Grant No.2019KFJJ0818022)。
文摘Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.