期刊文献+
共找到1,362篇文章
< 1 2 69 >
每页显示 20 50 100
Metal oxide particle electrodes for degradation of high concentration phenol wastewater via electrocatalytic advanced oxidation
1
作者 Baowei Wang Yi Liao Tingting Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第11期204-213,共10页
High-concentration phenol wastewater is pollutant of concern that pose significant risks to human health and the environment.Three-dimensional electrocatalytic oxidation is one of the most promising wastewater treatme... High-concentration phenol wastewater is pollutant of concern that pose significant risks to human health and the environment.Three-dimensional electrocatalytic oxidation is one of the most promising wastewater treatment technologies because of its high treatment efficiency,low energy consumption and low secondary pollution.Lower-cost and higher-performance particles still faces great challenges.In this work,metal oxide particle electrodes were prepared using granular activated carbon(GAC)as a substrate to study the degradation of phenol by three-dimensional electrocatalytic oxidation.GAC particle electrodes loaded with different monometallic oxides(Mn,Fe,Co,Ce)and bimetallic oxides(Fe and Ce)were prepared by the impregnation method.The effectiveness of the particle electrodes in degrading phenol was greatly improved after active components loading.Among all monometallic oxide particle electrodes,the concentration degradation efficiency was in the order of Ce/GAC>Co/GAC>Mn/GAC>Fe/GAC,and the COD degradation efficiency was Ce/GAC>Fe/GAC>Co/GAC>Mn/GAC.After optimizing the loading metal type and loading amount,it was found that the 1.1%Fe-2.7%Ce/GAC particle electrode perform the best,with a phenol degradation efficiency of 95.48%,a COD degradation rate of 94.35%,an energy consumption of 0.75 kW·h·kg^(-1)COD.This lower-cost and higher-performance particle highlights a reliable route for solving the problem of particle electrode materials limiting the efficient treatment of phenol-containing wastewater. 展开更多
关键词 Phenol degradation electrocatalytic oxidation Three-dimensional electrochemical Particle electrode Advanced oxidation
下载PDF
2D zirconium-based metal-organic framework/bismuth(Ⅲ)oxide nanorods composite for electrocatalytic CO_(2)-to-formate reduction
2
作者 Dong-Ling Kuang Song Chen +4 位作者 Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2024年第7期33-38,共6页
Electrocatalytic carbon dioxide reduction reaction(eCO_(2)RR)represents one of the most promising technologies for sustainable conversion of CO_(2) to value-added products.Although metal-organic frameworks(MOFs)can be... Electrocatalytic carbon dioxide reduction reaction(eCO_(2)RR)represents one of the most promising technologies for sustainable conversion of CO_(2) to value-added products.Although metal-organic frameworks(MOFs)can be vastly functionalized to create active sites for CO_(2)RR,low intrinsic electrical conductivity always makes MOFs unfavorable candidates for eCO_(2)RR.Besides,studies on how to regulate eCO_(2)RR activity of MOFs from linkers'functionalities viewpoint lag far behind when compared with the assembly of multinuclear metal-centered clusters.In this work,non-toxic bismuth(Ⅲ)oxide(Bi2O3)was incorporated into a series of two-dimensional(2D)MOFs(ZrLX)established from Zr-oxo clusters and triazine-centered 3-c linkers with different functionalities(LX=1-5)to give composites ZrLX/Bi2O3.To investigate how functionalities on linkers distantly tune the eCO_(2)RR performance of MOFs,electron-donating/withdrawing groups were installed at triazine core or benzoate terminals.It is found that ZrL2/Bi2O3(-F functionalized on triazine core)exhibits the best eCO_(2)RR performance with the highest Faradaic efficiency(FE)of 96.73%at-1.07 V vs.RHE,the largest electroactive surface(Cdi=4.23 mF cm-2)and the highest electrical conductivity(5.54 x 10-7 S cm-1),highlighting tuning linker functionalities and hence electronic structure as an alternative way to regulate eCO_(2)RR. 展开更多
关键词 2D metal-organic framework Bismuth(Ⅲ)oxide nanorods electrocatalytic carbon dioxide reduction Microenvironment regulation
原文传递
Phenol Wastewater Degradation by Electrocatalytic Oxidation with RuO_2-IrO_2-SnO_2/Ti Anodes in the High Gravity Field 被引量:3
3
作者 Gao Jing Yan Junjuan +2 位作者 Liu Youzhi Zhang Dongming Chen Lijia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第4期75-81,共7页
A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-Ir... A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-IrO_2-SnO_2/Ti anodes. The influences of electric current density, inlet liquid circulation flowrate, high gravity factor, sodium chloride concentration,and initial pH value on phenol degradation efficiency were investigated, with the optimal operating conditions determined. The results showed that under the optimal operating conditions covering a current density of 35 mA/cm^2, an inlet liquid circulation flowrate of 48 L/h, a high gravity factor of 20, a sodium chloride concentration of 8.5 g/L, an initial pH value of 6.5, a reaction time of 100 min, and an initial phenol concentration of 500 mg/L, the efficiency for removal of phenol reached 99.7%, which was improved by 10.4% as compared to that achieved in the normal gravity field. The tendency regarding the change in efficiency for removal of phenol, total organic carbon(TOC), and chemical oxygen demand(COD)over time was studied. The intermediates and degradation pathway of phenol were deduced by high performance liquid chromatography(HPLC). 展开更多
关键词 high gravity RuO2-IrO2-SnO2/Ti anode electrocatalytic oxidation PHENOL wastewater DEGRADATION pathway
下载PDF
Oxygen-coordinated low-nucleus cluster catalysts for enhanced electrocatalytic water oxidation 被引量:5
4
作者 Jiapeng Ji Yunpeng Hou +7 位作者 Shiyu Zhou Tong Qiu Liang Zhang Lu Ma Chao Qian Shaodong Zhou Chengdu Liang Min Ling 《Carbon Energy》 SCIE CSCD 2023年第2期137-147,共11页
The oxygen evolution reaction(OER)activity of single-atom catalysts(SACs)is closely related to the coordination environment of the active site.Oxygencoordinated atomic metal species bring about unique features beyond ... The oxygen evolution reaction(OER)activity of single-atom catalysts(SACs)is closely related to the coordination environment of the active site.Oxygencoordinated atomic metal species bring about unique features beyond nitrogen-coordinated atomic metal species due to the fact that the M-O bond is weaker than the M-N bond.Herein,a series of metal-oxygen-carbon structured low-nucleus clusters(LNCs)are successfully anchored on the surface of multiwalled carbon nanotubes(M-MWCNTs,M=Ni,Co,or Fe)through a foolproof low-temperature gas transfer(300℃)method without any further treatment.The morphology and coordination configuration of the LNCs at the atomic level were confirmed by comprehensive characterizations.The synthetic Ni-MWCNTs electrocatalyst features excellent OER activity and stability under alkaline conditions,transcending the performances of Co-MWCNTs,Fe-MWCNTs and RuO_(2).Density functional theory calculations reveal that the moderate oxidation of low-nucleus Ni clusters changes the unoccupied orbital of Ni atoms,thereby lowering the energy barrier of the OER rate-limiting step and making the OER process more energy-efficient.This study demonstrates a novel versatile platform for large-scale manufacturing of oxygen-coordinated LNC catalysts. 展开更多
关键词 electrocatalytic water oxidation low-nucleus cluster low-temperature gas transfer metal-oxygen-carbon structure
下载PDF
Promoter Effects of Rare Earth Ions on Electrocatalytic Oxidation of Methanol 被引量:1
5
作者 JingHuaLIU HuiYANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第6期489-490,共2页
The promoter effects of rare earth ions on the electrocatalytic oxidation of methanol at the Pt electrode were studied using the cyclic voltammetry and stable polarization techniques. It was found for the first time ... The promoter effects of rare earth ions on the electrocatalytic oxidation of methanol at the Pt electrode were studied using the cyclic voltammetry and stable polarization techniques. It was found for the first time that Eu、Ho、Dy ions could accelerate the electrocatalytic oxidation of methanol at the Pt electrode, while Lu、Pr、Yb、Sm ions showed inhibitor effects. 展开更多
关键词 Rare earth METHANOL electrocatalytic oxidation.
下载PDF
Magnetic field assisted electrocatalytic oxidation of organic pollutants in electroplating wastewater 被引量:1
6
作者 王震 叶宽伟 +4 位作者 杨哲 夏哲韬 骆沁沁 万先凯 史惠祥 《Journal of Central South University》 SCIE EI CAS 2012年第6期1679-1684,共6页
To degrade the organic compounds in the electroplating wastewater,magnetic field was tentatively introduced into electrocatalytic oxidation on Ti-PbO2 anode.The magnetic field assisted electrocatalytic oxidation can p... To degrade the organic compounds in the electroplating wastewater,magnetic field was tentatively introduced into electrocatalytic oxidation on Ti-PbO2 anode.The magnetic field assisted electrocatalytic oxidation can promote anion movement and the generation of active species,resulting more organic compounds to be oxidized and degraded.Oxidation parameters such as treatment time,current density and initial pH of the wastewater were systematically discussed and optimized.The mineralization of organic compounds is improved by over 15% under a magnetic density of 22 mT while the current density is 50 A/m2,pH is 1.8 and the reaction time is 1.5 h.The results indicate that the magnetic field assisted electrocatalytic oxidation has considerable potential in electroplating wastewater treatment. 展开更多
关键词 magnetic field electrocatalytic oxidation electroplating wastewater
下载PDF
Encapsulation of a nickel Salen complex in nanozeolite LTA as a carbon paste electrode modifier for electrocatalytic oxidation of hydrazine 被引量:1
7
作者 Seyed Karim Hassaninejad-Darzi 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第2期283-296,共14页
A nickel salen complex was encapsulated in the supercages of nanozeolite NaA,LTA(linde type A)structure,using the flexible ligand method.The electrochemical behavior and electrocatalytic activity of a carbon paste ele... A nickel salen complex was encapsulated in the supercages of nanozeolite NaA,LTA(linde type A)structure,using the flexible ligand method.The electrochemical behavior and electrocatalytic activity of a carbon paste electrode(CPE)modified with Ni(II)‐Salen‐A(Ni(II)‐SalenA/CPE)for hydrazine oxidation in0.1mol/L NaOH solution were investigated by cyclic voltammetry,chronoamperometry,and chronocoulometry.First,organic‐template‐free synthesis of nanozeolite LTA was performed and the obtained material was characterized by various techniques.The average particle size of the LTA crystals was estimated to be56.1and72nm by X‐ray diffraction and particle size analysis,respectively.The electron transfer coefficient was found to be0.64and the catalytic rate constant for oxidation of hydrazine at the redox sites of Ni(II)‐SalenA/CPE was found to be1.03×105cm3/(mol·s).Investigation of the electrocatalytic mechanism suggested that oxidation of hydrazine occurred through reaction with Ni3+(Salen)O(OH)and also direct electrooxidation.The anodic peak currents revealed a linear dependence on the square root of the scan rate,indicating a diffusion‐controlled process,and the diffusion coefficient of hydrazine was found to be1.18×10?7cm2/s.The results indicated that Ni(II)‐SalenA/CPE displays good electrocatalytic activity toward hydrazine oxidation owing to the porous structure of nanozeolite LTA and the Ni(II)‐Salen complex.Finally,the general reaction mechanism for the electrooxidation of hydrazine on Ni(II)‐SalenA/CPE in alkaline solution involves the transfer of four electrons,in which the first electron transfer reaction acts as the rate‐limiting step followed by a three‐electron process to generate environmentally friendly nitrogen and water as final products. 展开更多
关键词 Nanozeolite linde type A Salen complex Ni(II)‐SalenA modified carbon paste electron HYDRAZINE electrocatalytic oxidation Fuel cell
下载PDF
Electrocatalytic Activity of Pt/C Electrodes for Ethanol Oxidation in Vapor Phase
8
作者 LIANG Hong YE Dai-qi LIN Wei-ming 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第5期597-600,共4页
High performance platinized-carbon electrodes have been developed for the electrocatalytic oxidation of ethanol to acetaldehyde in electrogenerative processes. A load current density of the electrode can be achieved a... High performance platinized-carbon electrodes have been developed for the electrocatalytic oxidation of ethanol to acetaldehyde in electrogenerative processes. A load current density of the electrode can be achieved as high as 600 mA per square centimeter for oxygen reducing in 3 mol/L sulfuric acid with a good stability. With these electrodes and sulfuric acid as an electrolyte in fuel cells, ethanol vapor carried by nitrogen gas can be oxidized selectively to acetaldehyde. Selectivity of acetaldehyde depends on the potential of the cell and the feed rate of ethanol vapor and it can be more than 80% under optimized conditions. The initial product of ethanol oxidized on a platinized-carbon electrode is acetaldehyde and the ethanol oxidation mechanism is discussed. 展开更多
关键词 ETHANOL PLATINUM electrocatalytic oxidation ACETALDEHYDE
下载PDF
Electrocatalytic Oxidation of Ethanol on Electrodcposited Palladium Electrode
9
作者 Pei Liang SHE Shi Bing YAO Shao Min ZHOU(Department of Chemistry.State Key Laboratory for Physical Chemistry of Solid SurfacesXiamen University. Xiamen 361005) 《Chinese Chemical Letters》 SCIE CAS CSCD 1999年第5期407-410,共4页
The oxidation of ethanol in 1 .0 mol/L NaOH was studied on Pd/GC electrode preparedby electrodeposition. The results show that (1) Pd/GC electrode can also demonstrateclectrocatalytic activity towards the oxidation o... The oxidation of ethanol in 1 .0 mol/L NaOH was studied on Pd/GC electrode preparedby electrodeposition. The results show that (1) Pd/GC electrode can also demonstrateclectrocatalytic activity towards the oxidation of cthanolf (2) two backward anodic peaks on thecathodic branch appear when the ethanol concentration is raised up to 0.5 mol/L. 展开更多
关键词 ELECTRODEPOSITION electrocatalytic oxidation ETHANOL
下载PDF
Effect of Rotation Rate on the Formation of Platinum-modified Polyaniline Film and Electrocatalytic Oxidation of Methanol
10
作者 QiuHongLI LinNIU +2 位作者 ChangQiaoZHANG FengHuaWEI HuZHANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第1期115-117,共3页
The oxidation of methanol was investigated on platinum-modified polyaniline electrode. Changes in the electrode rotation rates (Ω) during platinum electrodeposition remarkably affect the formation and distribution o... The oxidation of methanol was investigated on platinum-modified polyaniline electrode. Changes in the electrode rotation rates (Ω) during platinum electrodeposition remarkably affect the formation and distribution of platinum in the polymer matrix and consequently lead to different currents of methanol oxidation. The results show that platinum loading is proportional to rotation ratesΩ1/2. 展开更多
关键词 Platinum-modified polyaniline electrode electrode rotation rate methanol oxidation electrocatalytic activity.
下载PDF
Green bio-synthesis of Ni/montmorillonite nanocomposite using extract of Allium jesdianum as the nano-catalyst for electrocatalytic oxidation of methanol
11
作者 Mohammad Hossein Sheikh-Mohseni Sajjad Sedaghat +1 位作者 Pirouz Derakhshi Aliakbar Safekordi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第10期2555-2565,共11页
In this work,synthesis of Ni nanoparticles was carried out successfully by water extract of Allium jesdianum as a biochemical reducing agent in the presence of montmorillonite clay(MMT)as a natural solid support for t... In this work,synthesis of Ni nanoparticles was carried out successfully by water extract of Allium jesdianum as a biochemical reducing agent in the presence of montmorillonite clay(MMT)as a natural solid support for the first time.Then the electrochemical activity of the synthesized nanocomposite was investigated in methanol electrocatalytic oxidation.MMT with high cation exchange capacity and nano layer structure was exposed to ion exchange conditions in nickel solution.Then Ni^2+ion exchanged form was used in this process as a source of ions and also capping agent.Water extract of Allium jesdianum used as a reducing agent due to abundant availability of phenolic and flavonoid contents.The synthesized Ni/MMT nanocomposite was characterized using UV–Vis spectroscopy(UV–Vis),Fourier Transform Infrared Spectroscopy(FT-IR),X-ray diffraction(XRD),Scanning Electron Microscopy(SEM),Transmission electron microscopy(TEM)and Energy-dispersive X-ray spectroscopy(EDX).The surface of prepared modified electrode has been characterized using SEM to evaluate the morphology,showing uniform dispersion of Ni nanoparticles with mean diameter of 12 to 20 nm.The modified carbon paste electrode was then used in methanol electrocatalytic oxidation reaction.Methanol oxidation on the proposed modified electrode surface occurs at 0.6 V and 0.3 V in alkaline and acidic medium respectively.Also,the results showed the better performance of modified electrode toward methanol electrocatalytic oxidation in comparison with carbon paste electrode that is modified by ion exchanged MMT.Charge transfer coefficients and apparent charge transfer rate constant for the modified electrode in the absence of methanol in alkaline medium were respectively found as:αa=0.53,αc=0.37 and ks=1.6×10^-1 s^-1.Also,the average value of catalytic rate constant for the electrocatalytic oxidation of methanol by the prepared nano-catalyst was estimated to be about 0.9 L·mol^-1·s^-1 by chronoamperometry technique.The prepared electrode was also effective for electrocatalytic oxidation of ethanol and formaldehyde in alkaline medium. 展开更多
关键词 Green biosynthesis Nanoparticles MONTMORILLONITE BIOCATALYSIS Methanol electrocatalytic oxidation Fuel cell
下载PDF
Electrocatalytic oxidation behavior of L-cysteine at Pt microparticles modified nanofibrous polyaniline film electrode
12
作者 马淞江 罗胜联 +2 位作者 周海晖 旷亚非 宁晓辉 《Journal of Central South University of Technology》 EI 2008年第2期170-175,共6页
Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy.The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI e... Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy.The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI electrode was investigated by cyclic voltammetry.The results indicate that the pH value of the solution and the Pt loading of the electrode have great effect on the electrocatalytic property of the Pt /nanofibrous PANI electrode;the suitable Pt loading of the electrode is 600 μg/cm2 and the suitable pH value of the solution is 4.5 for investigating L-cysteine oxidation.The L-cysteine sensor based on the Pt/nanofibrous PANI electrode has a good selectivity,reproducibility and stability.The Pt/nanofibrous PANI electrode is highly sensitive to L-cysteine,and the linear calibration curve for the oxidation of L-cysteine can be observed in the range of 0.2-5.0 mmol/L. 展开更多
关键词 electrocatalytic oxidation electrode POLYANILINE platinum L-CYSTEINE NANOFIBRE
下载PDF
Electrocatalytic Oxidation of Methanol on Glassy Carbon Electrode Modified by Metal Ions (Copper and Nickel) Dispersed into Polyaniline Film
13
作者 Asmea Khouchaf Driss Takky +1 位作者 Mohammed El Mahi Chbihi Said Benmokhtar 《Journal of Materials Science and Chemical Engineering》 2016年第2期97-105,共9页
Polyaniline film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of glassy carbon electrode. Then transition metal ions of Ni and Cu were incorporated to the polymer... Polyaniline film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of glassy carbon electrode. Then transition metal ions of Ni and Cu were incorporated to the polymer by immersion of the modified electrode. A comparative study of the electrocatalytic oxidation of methanol is made in NaOH, on Ni and Cu on polyaniline film covered glassy carbon electrode (Ni-PANI-GC, Cu-PANI-GC) at 25℃. Catalytic activity for the oxidation of methanol was studied by using cyclic voltammetry. 展开更多
关键词 METHANOL Polyanilne Cyclic Voltammetry electrocatalytic oxidation
下载PDF
Two-dimensional PtRu Nanoclusters Carbon Based Electrocatalysts for Methanol Oxidation
14
作者 胡忠良 QIN Shilin +2 位作者 LI Zhaohui ZHU Yirong LIU Weijian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期537-540,共4页
A novel method to prepare an electrocatalyst with a new structure and high catalytic performance was reported. Two-dimensional(2 D) PtRu nanoclusters have been successfully deposited on graphene oxide and carbon bla... A novel method to prepare an electrocatalyst with a new structure and high catalytic performance was reported. Two-dimensional(2 D) PtRu nanoclusters have been successfully deposited on graphene oxide and carbon black supports. Compared with the commercial 3 D E-TEK PtRu samples, the prepared 2 D PtRu composites have larger electrochemically active surface area and display much higher catalytic activity toward methanol oxidation reaction. The preparation method mainly includes the following procedures: oxidation of carbon matrix, Pb^(2+) adsorption on the surface of carbon support, Pb^(2+) electrochemical reduction and galvanic displacement of Pb^0 by Pt^(2+) and Ru^(3+). The method developed in this study could be viable for solving the problem of low electrocatalytic activity in direct methanol fuel cell anodes. 展开更多
关键词 electrocatalyst two dimensional PtRu nanoclusters methanol oxidation direct methanol fuel cell
下载PDF
Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection 被引量:4
15
作者 胥燕燕 高明明 +4 位作者 张国辉 王新华 李佳佳 王曙光 桑元华 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1936-1942,共7页
An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) det... An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters. 展开更多
关键词 Electrochemically reduced graphene oxide Electrochemical detection Tetracycline electrocatalytic activity Oxygen-containing functional groups
下载PDF
Electrocatalytic Synthesis of Propylene Carbonate from CO_2 and Propylene Oxide 被引量:2
16
作者 ZHANG Li WANG Huan +2 位作者 LI Rui-na CHEN Bao-li LU Jla-xing 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第2期300-303,共4页
The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the ... The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the passed charge, the nature of electrodes and the current density(j) on the yield of PC were investigated to optimize the electrolytic conditions, with the maximal yield to be 46.2%, the selectivity of propylene carbonate is 100%. The reduction of propylene oxide in the absence and presence of CO2 was examined by cyclic voltammetry. The mechanism of the reaction initiated by the synergistic effect of halides ions of supporting electrolytes with nucleophilicity and the metal ions from scarification anode with Lewis acid acidity was proposed on the basis of our results. 展开更多
关键词 CO2 electrocatalytic synthesis Propylene carbonate Propylene oxide Halide ion
下载PDF
Realizing efficient electrochemical oxidation of 5-hydroxymethylfurfural on a freestanding Ni(OH)_(2)/nickel foam catalyst
17
作者 Yunying Huo Cong Guo +6 位作者 Yongle Zhang Jingyi Liu Qiao Zhang Zhiting Liu Guangxing Yang Rengui Li Feng Peng 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期282-291,共10页
With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical c... With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)_(2) species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100% with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)_(2) and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)_(2) to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals. 展开更多
关键词 Acid-corrosion-induced 5-HYDROXYMETHYLFURFURAL electrocatalytic oxidation Ni electrocatalysis
下载PDF
Preparation and Electrocatalytic Activity of Polyaniline-poly (Propylene Oxide) Modified by Pt Nanoparticles 被引量:1
18
作者 李美超 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第4期9-11,共3页
The preparation and electrocatalytic activity of polyaniline-poly ( propylene oxide ) ( PAN-PPO ) modified by Pt particles ( Pt/ PAN-PPO ) were investigated. Pt/ PAN-PPO was characterized by scanning electron mi... The preparation and electrocatalytic activity of polyaniline-poly ( propylene oxide ) ( PAN-PPO ) modified by Pt particles ( Pt/ PAN-PPO ) were investigated. Pt/ PAN-PPO was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy ( EDS ). Pt particles on PAN-PPO were in the nanometer range, and dispersed in a three-dimensional distribution on the surface of PAN-PPO film. Compared with polyaniline and glassy carbon modified with Pt particles under the same conditions, Pt/PAN-PPO exhibited a high electrocatalytic activity for lysine oxidation. 展开更多
关键词 ANILINE propylene oxide COPOLYMER PLATINUM electrocatalytic activity LYSINE
下载PDF
Controlled Growth of One-Dimensional Oxide Nanomaterials 被引量:8
19
作者 Xiaosheng FANG Lide ZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第1期1-18,共18页
This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was ca... This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was carried out in a simple chemical vapor transport and condensation system. This article will begin with a survey of nanotechnology and 1D nanomaterials achieved by many researchers, and then mainly discuss on the controlled growth of ID oxide nanomaterials with their morphologies, sizes, compositions, and microstructures controlled by altering experimental parameters, such as the temperature at the source material and the substrate, temperature gradient in the tube furnace, the total reaction time, the heating rate of the furnace, the gas flow rate, and the starting material. Their roles in the formation of various morphologies are analyzed and discussed. Finally, this review will be concluded with personal perspectives on the future research directions of this area. 展开更多
关键词 Controlled growth ONE-dimensional oxidE NANOMATERIALS
下载PDF
High-mobility two-dimensional electron gases at oxide interfaces:Origin and opportunities 被引量:1
20
作者 陈允忠 Nini Pryds +2 位作者 孙继荣 沈保根 SФren Linderoth 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期1-11,共11页
Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electro... Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electron gas (2DEG) at oxide interfaces. Due to the presence of oxygen vacancies at the SrTiO3 surface, metallic conduction can be created at room temperature in perovskite-type interfaces when the overlayer oxide ABO3 has Al, Ti, Zr, or Hf elements at the B sites. Furthermore, relying on interface-stabilized oxygen vacancies, we have created a new type of 2DEG at the heterointerface between SrTiO3 and a spinel γ-Al2O3 epitaxial film with compatible oxygen ion sublattices. This 2DEG exhibits an electron mobility exceeding 100000 cm2·V-1·s-1, more than one order of magnitude higher than those of hitherto investigated perovskite-type interfaces. Our findings pave the way for the design of high-mobility all-oxide electronic devices and open a route toward the studies of mesoscopic physics with complex oxides. 展开更多
关键词 oxide interfaces two-dimensional electron gas (2DEG) SRTIO3 oxygen vacancies
下载PDF
上一页 1 2 69 下一页 到第
使用帮助 返回顶部