期刊文献+
共找到881,581篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Branch Fault Line Location Method Based on Time Difference Matrix Fitting
1
作者 Hua Leng Silin He +3 位作者 Jian Qiu Feng Liu Xinfei Huang Jiran Zhu 《Energy Engineering》 EI 2024年第1期77-94,共18页
The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-bran... The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location. 展开更多
关键词 Multi-branch lines distribution network fault location double-ended traveling wave positioning least square method
下载PDF
Nonlinear Flap-Wise Vibration Characteristics ofWind Turbine Blades Based onMulti-Scale AnalysisMethod
2
作者 Qifa Lang Yuqiao Zheng +2 位作者 Tiancai Cui Chenglong Shi Heyu Zhang 《Energy Engineering》 EI 2024年第2期483-498,共16页
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR... This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams. 展开更多
关键词 Wind turbine blades nonlinear vibration Galerkin method multi-scales method
下载PDF
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
3
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 linearized Korteweg-de Vries(KdV)equation Implicit-explicit(IMEX)Runge-Kutta(RK)method STABILITY Courant-Friedrichs-Lewy(CFL)condition Finite difference(FD)method Local discontinuous Galerkin(DG)method
下载PDF
Fast and Accurate Predictor-Corrector Methods Using Feedback-Accelerated Picard Iteration for Strongly Nonlinear Problems
4
作者 Xuechuan Wang Wei He +1 位作者 Haoyang Feng Satya N.Atluri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1263-1294,共32页
Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A no... Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A novel class of correctors based on feedback-accelerated Picard iteration(FAPI)is proposed to further enhance computational performance.With optimal feedback terms that do not require inversion of matrices,significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts;however,the computational complexities are comparably low.These advantages enable nonlinear engineering problems to be solved quickly and accurately,even with rough initial guesses from elementary predictors.The proposed method offers flexibility,enabling the use of the generated correctors for either bulk processing of collocation nodes in a domain or successive corrections of a single node in a finite difference approach.In our method,the functional formulas of FAPI are discretized into numerical forms using the collocation approach.These collocated iteration formulas can directly solve nonlinear problems,but they may require significant computational resources because of the manipulation of high-dimensionalmatrices.To address this,the collocated iteration formulas are further converted into finite difference forms,enabling the design of lightweight predictor-corrector algorithms for real-time computation.The generality of the proposed method is illustrated by deriving new correctors for three commonly employed finite-difference approaches:the modified Euler approach,the Adams-Bashforth-Moulton approach,and the implicit Runge-Kutta approach.Subsequently,the updated approaches are tested in solving strongly nonlinear problems,including the Matthieu equation,the Duffing equation,and the low-earth-orbit tracking problem.The numerical findings confirm the computational accuracy and efficiency of the derived predictor-corrector algorithms. 展开更多
关键词 Predictor-corrector method feedback-accelerated Picard iteration nonlinear dynamical system real-time computation
下载PDF
Energy Stable Nodal DG Methods for Maxwell’s Equations of Mixed-Order Form in Nonlinear Optical Media
5
作者 Maohui Lyu Vrushali A.Bokil +1 位作者 Yingda Cheng Fengyan Li 《Communications on Applied Mathematics and Computation》 EI 2024年第1期30-63,共34页
In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic ... In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations. 展开更多
关键词 Maxwell’s equations Kerr and Raman Discontinuous Galerkin method Energy stability
下载PDF
Distribution Line Longitudinal ProtectionMethod Based on Virtual Measurement Current Restraint
6
作者 WeiWang Yang Yu +3 位作者 Simin Luo Wenlin Liu Wei Tang Yuanbo Ye 《Energy Engineering》 EI 2024年第2期315-337,共23页
As an effective approach to achieve the“dual-carbon”goal,the grid-connected capacity of renewable energy increases constantly.Photovoltaics are the most widely used renewable energy sources and have been applied on ... As an effective approach to achieve the“dual-carbon”goal,the grid-connected capacity of renewable energy increases constantly.Photovoltaics are the most widely used renewable energy sources and have been applied on various occasions.However,the inherent randomness,intermittency,and weak support of grid-connected equipment not only cause changes in the original flow characteristics of the grid but also result in complex fault characteristics.Traditional overcurrent and differential protection methods cannot respond accurately due to the effects of unknown renewable energy sources.Therefore,a longitudinal protection method based on virtual measurement of current restraint is proposed in this paper.The positive sequence current data and the network parameters are used to calculate the virtual measurement current which compensates for the output current of photovoltaic(PV).The waveform difference between the virtual measured current and the terminal current for internal and external faults is used to construct the protection method.An improved edit distance algorithm is proposed to measure the similarity between virtual measurement current and terminal measurement current.Finally,the feasibility of the protection method is verified through PSCAD simulation. 展开更多
关键词 Photovoltaic interconnection distribution network longitudinal protection method edit distance algorithm
下载PDF
Wavelet Multi-Resolution Interpolation Galerkin Method for Linear Singularly Perturbed Boundary Value Problems
7
作者 Jiaqun Wang Guanxu Pan +1 位作者 Youhe Zhou Xiaojing Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期297-318,共22页
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r... In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5. 展开更多
关键词 Wavelet multi-resolution interpolation Galerkin singularly perturbed boundary value problems mesh-free method Shishkin node boundary layer
下载PDF
A Novel Method for Linear Systems of Fractional Ordinary Differential Equations with Applications to Time-Fractional PDEs
8
作者 Sergiy Reutskiy Yuhui Zhang +1 位作者 Jun Lu Ciren Pubu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1583-1612,共30页
This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering a... This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency. 展开更多
关键词 System of FODEs numerical solution Müntz polynomial basis time fractional PDE BSM collocation method
下载PDF
Highly Accurate Golden Section Search Algorithms and Fictitious Time Integration Method for Solving Nonlinear Eigenvalue Problems
9
作者 Chein-Shan Liu Jian-Hung Shen +1 位作者 Chung-Lun Kuo Yung-Wei Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1317-1335,共19页
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve... This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency. 展开更多
关键词 Nonlinear eigenvalue problem quadratic eigenvalue problem two new merit functions golden section search algorithm fictitious time integration method
下载PDF
Simulation of Steel Reinforcement on the Nonlinear Behaviour of Slender Glulam Beam Columns by Using the Newton-Raphson Method
10
作者 Martial Ourmama Marcelline Blanche Manjia Edmond Dawak Fezeu 《Open Journal of Applied Sciences》 2024年第2期243-266,共24页
The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical h... The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical hardwood species from the Congo Basin. This maximum deflection is caused by a set of loads applied to the structure. However, Eurocode 5 doesn’t provide how to predict this deflection in case of long-term load for such structures. This can be done by studying load-displacement (P-Δ) behaviour of these structures while taking into account second order effects. To reach this goal, a nonlinear analysis has been performed on a three-dimensional beam column embedded on both ends. Since conducting experimental investigations on large span structural products is time-consuming and expensive especially in developing countries, a numerical model has been implemented using the Newton-Raphson method to predict load-displacement (P-Δ) curve on a slender glulam beam column made of tropical hardwood species. On one hand, the beam has been analyzed without wood connection. On the other hand, the beam has been analyzed with a bolted wood connection and a slotted-in steel plate. The load cases considered include self-weight and a uniformly applied long-term load. Combinations of serviceability limit states (SLS) and ultimate limit states (ULS) have also been considered, among other factors. A finite-element software RFEM 5 has been used to implement the model. The results showed that the use of steel can reduce displacement by 20.96%. Additionally, compared to the maximum deflection provided by Eurocode 5 for softwoods, hardwoods can exhibit an increasing rate of 85.63%. By harnessing the plastic resistance of steel, the bending resistance of wood can be increased by 32.94%. 展开更多
关键词 Nonlinear Analysis Newton-Raphson method Maximum Deflection Bolted Wood Connection Hardwood Species
下载PDF
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
11
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
下载PDF
Research on Narrowband Line Spectrum Noise Control Method Based on Nearest Neighbor Filter and BP Neural Network Feedback Mechanism 被引量:1
12
作者 Shuiping Zhang Xi Liang +2 位作者 Lin Shi Lei Yan Jun Tang 《Sound & Vibration》 EI 2023年第1期29-44,共16页
Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to ... Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to update thefilter coefficients,it has a certain delay,usually has a slow convergence speed,and the system response time is long and easily affected by the learning rate leading to the lack of system stability,which often fails to achieve the desired control effect in practice.In this paper,we propose an active control algorithm with near-est-neighbor trap structure and neural network feedback mechanism to reduce the coefficient update time of the FxLMS algorithm and use the neural network feedback mechanism to realize the parameter update,which is called NNR-BPFxLMS algorithm.In the paper,the schematic diagram of the feedback control is given,and the performance of the algorithm is analyzed.Under various noise conditions,it is shown by simulation and experiment that the NNR-BPFxLMS algorithm has the following three advantages:in terms of performance,it has higher noise reduction under the same number of sampling points,i.e.,it has faster convergence speed,and by computer simulation and sound pipe experiment,for simple ideal line spectrum noise,compared with the convergence speed of NNR-BPFxLMS is improved by more than 95%compared with FxLMS algorithm,and the convergence speed of real noise is also improved by more than 70%.In terms of stability,NNR-BPFxLMS is insensitive to step size changes.In terms of tracking performance,its algorithm responds quickly to sudden changes in the noise spectrum and can cope with the complex control requirements of sudden changes in the noise spectrum. 展开更多
关键词 FxLMS NNR-BPFxLMS line spectrum noise BP neural network feedback convergence speed
下载PDF
A Numerical Investigation Based on Exponential Collocation Method for Nonlinear SITR Model of COVID-19 被引量:1
13
作者 Mohammad Aslefallah Suayip Yüzbasi Saeid Abbasbandy 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1687-1706,共20页
In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathema... In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics,namely,susceptible(S),infected(I),treatment(T),and recovered(R).The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points.To indicate the usefulness of this method,we employ it in some cases.For error analysis of the method,the residual of the solutions is reviewed.The reported examples show that the method is reasonably efficient and accurate. 展开更多
关键词 Coronavirus(COVID-19) SITR model exponential approximation differential equations system collocation method operational matrix
下载PDF
Modeling pipe-soil interaction under vertical downward relative offset using B-spline material point method 被引量:1
14
作者 Chunxin Zhang Honghu Zhu Haojie Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1520-1534,共15页
To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pip... To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent. 展开更多
关键词 Pipe-soil interaction Material point method(MPM) Large ground deformation Failure mechanism Downward movement
下载PDF
A SUPERLINEARLY CONVERGENT SPLITTING FEASIBLE SEQUENTIAL QUADRATIC OPTIMIZATION METHOD FOR TWO-BLOCK LARGE-SCALE SMOOTH OPTIMIZATION
15
作者 简金宝 张晨 刘鹏杰 《Acta Mathematica Scientia》 SCIE CSCD 2023年第1期1-24,共24页
This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method fo... This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method for the discussed problem is proposed.First,we consider the problem of quadratic optimal(QO)approximation associated with the current feasible iteration point,and we split the QO into two small-scale QOs which can be solved in parallel.Second,a feasible descent direction for the problem is obtained and a new SQO-type method is proposed,namely,splitting feasible SQO(SF-SQO)method.Moreover,under suitable conditions,we analyse the global convergence,strong convergence and rate of superlinear convergence of the SF-SQO method.Finally,preliminary numerical experiments regarding the economic dispatch of a power system are carried out,and these show that the SF-SQO method is promising. 展开更多
关键词 large scale optimization two-block smooth optimization splitting method feasible sequential quadratic optimization method superlinear convergence
下载PDF
Multi-Equipment Detection Method for Distribution Lines Based on Improved YOLOx-s
16
作者 Lei Hu Yuanwen Lu +2 位作者 Si Wang Wenbin Wang Yongmei Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第12期2735-2749,共15页
The YOLOx-s network does not sufficiently meet the accuracy demand of equipment detection in the autonomous inspection of distribution lines by Unmanned Aerial Vehicle(UAV)due to the complex background of distribution... The YOLOx-s network does not sufficiently meet the accuracy demand of equipment detection in the autonomous inspection of distribution lines by Unmanned Aerial Vehicle(UAV)due to the complex background of distribution lines,variable morphology of equipment,and large differences in equipment sizes.Therefore,aiming at the difficult detection of power equipment in UAV inspection images,we propose a multi-equipment detection method for inspection of distribution lines based on the YOLOx-s.Based on the YOLOx-s network,we make the following improvements:1)The Receptive Field Block(RFB)module is added after the shallow feature layer of the backbone network to expand the receptive field of the network.2)The Coordinate Attention(CA)module is added to obtain the spatial direction information of the targets and improve the accuracy of target localization.3)After the first fusion of features in the Path Aggregation Network(PANet),the Adaptively Spatial Feature Fusion(ASFF)module is added to achieve efficient re-fusion of multi-scale deep and shallow feature maps by assigning adaptive weight parameters to features at different scales.4)The loss function Binary Cross Entropy(BCE)Loss in YOLOx-s is replaced by Focal Loss to alleviate the difficulty of network convergence caused by the imbalance between positive and negative samples of small-sized targets.The experiments take a private dataset consisting of four types of power equipment:Transformers,Isolators,Drop Fuses,and Lightning Arrestors.On average,the mean Average Precision(mAP)of the proposed method can reach 93.64%,an increase of 3.27%.The experimental results show that the proposed method can better identify multiple types of power equipment of different scales at the same time,which helps to improve the intelligence of UAV autonomous inspection in distribution lines. 展开更多
关键词 Distribution lines UAV autonomous inspection power equipment detection YOLOx-s
下载PDF
Novel camera calibration method based on invariance of collinear points and pole-polar constraint
17
作者 WEI Liang ZHANG Guiyang +1 位作者 HUO Ju XUE Muyao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期744-753,共10页
To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of t... To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of the ellipses are extracted,and the real concentric circle center projection equation is established by exploiting the cross ratio invariance of the collinear points.Subsequently,since the infinite lines passing through the centers of the marks are parallel,the other center projection coordinates are expressed as the solution problem of linear equations.The problem of projection deviation caused by using the center of the ellipse as the real circle center projection is addressed,and the results are utilized as the true image points to achieve the high precision camera calibration.As demonstrated by the simulations and practical experiments,the proposed method performs a better location and calibration performance by achieving the actual center projection of circular marks.The relevant results confirm the precision and robustness of the proposed approach. 展开更多
关键词 camera calibration cross ratio invariance infinite lines eccentricity error compensate
下载PDF
Methods for the Determination of Stable Isotopes of Carbon and Nitrogen Directly in Valine, Proline, Glutamine, and Glutamic Acid
18
作者 Lamzira Farulava Levani Eliashvili +1 位作者 Vakhtang Betlemidze Bachana Sulava 《American Journal of Analytical Chemistry》 2023年第10期467-480,共14页
Amino acids are very important compounds for the body and are involved in important functions that keep us healthy. Amino acids are essential components such as valine, proline, glutamine and glutamic acid. They can b... Amino acids are very important compounds for the body and are involved in important functions that keep us healthy. Amino acids are essential components such as valine, proline, glutamine and glutamic acid. They can be synthesized either naturally or artificially. To examine the metabolism and regulate the synthesis process, compounds labeled with nitrogen or carbon isotopes need to be used. These isotopic compounds allow for more extensive research and enable studies that would otherwise be impossible. However, their use is dependent on the availability of simple, efficient methods for isotopic analysis. Currently, the determination of the atomic fraction of carbon and nitrogen isotopes is only possible through their conversion into molecular nitrogen or carbon monoxide or carbon dioxide. This leads to the loss of information about isotopic enrichment in specific centers of the molecule. This article explores a new direct approach to determining the atomic fraction of carbon and nitrogen isotopes in the isotope-modified or identical centers of these compounds. This method eliminates the transfer process and dilution due to nitrogen and carbon impurities. It is now possible to simultaneously determine the atomic fraction of nitrogen and carbon isotopes in the research substance. This method can be applied to amino acids, making it an effective tool for proposing new research methods. Several articles [1] [2] [3] have proposed similar methods for organic compounds and amino acids. 展开更多
关键词 VAline PROline GLUTAMINE Glutamic Acid Mass Spectrometer Mass Spectrum Ion Current INTENSITY Mass lines Molecular and Fragment Ions
下载PDF
FFT-Based Numerical Method for Nonlinear Elastic
19
作者 Fei Guo Fan Wu +2 位作者 Xinyong Li Yijie Huang Zhuo Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期266-279,共14页
In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic co... In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic contact is typically simplifed to a linear elastic contact problem, which must be improved in terms of calculation accuracy. Based on the fast Fourier transform, a numerical method suitable for elastoplastic and hyperelastic frictionless contact that can be used for solving two-dimensional and three-dimensional (3D) contact problems is proposed herein. The nonlinear elastic contact problem is converted into a linear elastic contact problem considering residual deformation (or the equivalent residual deformation). Results from numerical simulations for elastic, elastoplastic, and hyperelastic contact between a hemisphere and a rigid plane are compared with those obtained using the fnite element method to verify the accuracy of the numerical method. Compared with the existing elastoplastic contact numerical methods, the proposed method achieves a higher calculation efciency while ensuring a certain calculation accuracy (i.e., the pressure error does not exceed 15%, whereas the calculation time does not exceed 10 min in a 64 × 64 grid). For hyperelastic contact, the proposed method reduces the dependence of the approximation result on the load, as in a linear elastic approximation. Finally, using the sealing application as an example, the contact and leakage rates between complicated 3D rough surfaces are calculated. Despite a certain error, the simplifed numerical method yields a better approximation result than the linear elastic contact approximation. Additionally, the result can be used as fast solutions in engineering applications. 展开更多
关键词 Numerical method Elastoplastic contact Hyperelastic contact FEM FFT
下载PDF
Drilling-based measuring method for the c-φ parameter of rock and its field application 被引量:1
20
作者 Bei Jiang Fenglin Ma +5 位作者 Qi Wang Hongke Gao Dahu Zhai Yusong Deng Chuanjie Xu Liangdi Yao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期65-76,共12页
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R... The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters. 展开更多
关键词 Digital drilling Rock crushing zone c-u parameter Measurement method Field application
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部