The three-axis servo system with the core of gyro stabilization is the foundation to realize its function, and a key technology of the seeker devolopment. In order to reduce the costs, improve the efficiency of resear...The three-axis servo system with the core of gyro stabilization is the foundation to realize its function, and a key technology of the seeker devolopment. In order to reduce the costs, improve the efficiency of research and devolopment, a new method that instead of physical prototype by virtual prototype was proposed. Adams and MATLAB/simulink are used to establish the mechanical dynamics model and controller model of the three-axis servo system. The simulation data which was processed and analyzed is compared with test data, to determine the control parameters of the virtual prototype and improve the accuracy of the model, and test the multiple condition simulation,which can provide a reference for practical production.The simulation results verify the feasibility of the models.展开更多
文摘The three-axis servo system with the core of gyro stabilization is the foundation to realize its function, and a key technology of the seeker devolopment. In order to reduce the costs, improve the efficiency of research and devolopment, a new method that instead of physical prototype by virtual prototype was proposed. Adams and MATLAB/simulink are used to establish the mechanical dynamics model and controller model of the three-axis servo system. The simulation data which was processed and analyzed is compared with test data, to determine the control parameters of the virtual prototype and improve the accuracy of the model, and test the multiple condition simulation,which can provide a reference for practical production.The simulation results verify the feasibility of the models.