A wireless sensor network is proposed to monitor the acceleration of structures for the purpose of structural health monitoring of civil engineering structures. Using commercially available parts, several modules are ...A wireless sensor network is proposed to monitor the acceleration of structures for the purpose of structural health monitoring of civil engineering structures. Using commercially available parts, several modules are constructed and integrated into complete wireless sensors and base stations. The communication protocol is designed and the fusion arithmetic of the temperature and acceleration is embedded in the wireless sensor node so that the measured acceleration values are more accurate. Measures are adopted to finish energy optimization, which is an important issue for a wireless sensor network. The test is perfonned on an offshore platform model, and the experimental results are given to show the feasibility of the designed wireless sensor network .展开更多
A linear acceleration sensor,which is inspired by the human balance organ,is designed and prepared. It uses a liquid mass-block and a symmetrical-electrodes metal-core polyvinylidene fluoride fiber(SMPF)as the sensor ...A linear acceleration sensor,which is inspired by the human balance organ,is designed and prepared. It uses a liquid mass-block and a symmetrical-electrodes metal-core polyvinylidene fluoride fiber(SMPF)as the sensor element. The output signal of the sensor has an exponential relationship with the excitation amplitude of the impacting vibration. It is capable of detecting the amplitude and the correct frequency for sinusoidal excitations using an exponential correlation. The experiments indicate that both the output signal of the sensor and the resonance frequency increase substantially with increasing diameter of the metal core. The first-order resonance frequencies of the sensors with 40,60,and 80 μm diameter metal wires are below 10 Hz,which is near the range of human body motion frequencies.展开更多
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe...Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.展开更多
Intentional electromagnetic interference is a serious threat to the safety of electronic devices. Multiple electromagnetic pulses will be coupled and transmitted to electronic devices through the cables.Accumulative e...Intentional electromagnetic interference is a serious threat to the safety of electronic devices. Multiple electromagnetic pulses will be coupled and transmitted to electronic devices through the cables.Accumulative effects are generated, which make it easier for damage to occur in the electronic devices. In this article, the working principle of micro-silicon acceleration sensors is introduced. The accumulative effects of multiple pulses on acceleration sensors is studied by a large number of injection experiments.The accumulation trends of multiple pulses with different pulse numbers and intervals are analyzed. The damaged structures inside abnormal sensor amplifiers were observed via optical microscopy and scanning electron microscopy. The experimental results show that the accumulative effect is strengthened with increased pulse number or decreased pulse interval, and the threshold voltage for multiple pulses on the acceleration sensor decreases. The threshold voltage for a single pulse is 321.57 V. When the pulse interval is 1 μs and the pulse number is 5, the threshold voltage for multiple pulses is 163.42 V,which is reduced by 49.12% compared with a single pulse. These results provide a reference for the damage design of electromagnetic pulse weapons.展开更多
This article presents a study of vehicle acceleration distribution at a traffic signal stop line in an urban environment. Accurate representation of vehicle acceleration behavior provides important inputs to traffic s...This article presents a study of vehicle acceleration distribution at a traffic signal stop line in an urban environment. Accurate representation of vehicle acceleration behavior provides important inputs to traffic simulation models especially when traffic related emissions need to be estimated. A smart eye TDS (traffic data sensor) system was used to record vehicle trajectories, which were extracted to calculate vehicle acceleration profiles. This paper presents the acceleration distributions obtained from over 300 passenger-car acceleration cycles observed on site from the stop line up to a maximum speed of 40 km/h. These distributions are compared with the outputs from a traffic micro simulation tool modeling a similar stop line scenario. The comparison shows that measured accelerations present wider distribution and lower values than the micro simulation. This result highlights the importance of using acceleration distribution calibrated with real-world measured data rather than default values in order to estimate accurate emission levels.展开更多
Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a b...Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine. The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration, and there is a linear relationship between the acceleration and the strain. These shed light on using carbon nanotube films as acceleration sensors for many potential applications.展开更多
Wireless smart sensors(WSS)process field data and inform inspectors about the infrastructure health and safety.In bridge engineering,inspectors need reliable data about changes in displacements under loads to make cor...Wireless smart sensors(WSS)process field data and inform inspectors about the infrastructure health and safety.In bridge engineering,inspectors need reliable data about changes in displacements under loads to make correct decisions about repairs and replacements.Access to displacement information in the field and in real-time remains a challenge as inspectors do not see the data in real time.Displacement data from WSS in the field undergoes additional processing and is seen at a different location.If inspectors were able to see structural displacements in real-time at the locations of interest,they could conduct additional observations,creating a new,information-based,decision-making reality in the field.This paper develops a new,human-centered interface that provides inspectors with real-time access to actionable structural data during inspection and monitoring enhanced by augmented reality(AR).It summarizes and evaluates the development and validation of the new human-infrastructure interface in laboratory experiments.The experiments demonstrate that the interface that processes all calculations in the AR device accurately estimates dynamic displacements in comparison with the laser.Using this new AR interface tool,inspectors can observe and compare displacement data,share it across space and time,visualize displacements in time history,and understand structural deflection more accurately through a displacement time history visualization.展开更多
In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great im...In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great impact on the product quality.It is necessary to monitor the status of equipment and to predict fault diagnosis.At present,most of the condition monitoring devices for mechanical equipment have problems of large size,low precision and low energy utilization.A wireless self-powered intelligent spindle vibration acceleration sensor system based on piezoelectric energy harvesting is proposed.Based on rotor sensing technology,a sensor is made to mount on the tool holder and build the related circuit.Firstly,the energy management module collects the mechanical energy in the environment and converts the piezoelectric vibration energy into electric energy to provide 3.3 Vfor the subsequent circuit.The lithium battery supplies the system with additional power and monitors’the power of the energy storage circuit in real-time.Secondly,a three-axis acceleration sensor is used to collect,analyze and filter a series of signal processing operations of the vibration signal in the environment.The signal is sent to the upper computer by wireless transmission.The host computer outputs the corresponding X,Y,and Z channel waveforms and data under the condition of the spindle speed of 50∼2500 r/min with real-time monitoring.The KEIL5 platform is used to develop the system software.The small-size piezoelectric vibration sensor with high-speed,high-energy utilization,high accuracy,and easy installation is used for spindle monitoring.The experiment results show that the sensor system is available and practical.展开更多
基金Supported by the High Technology Research and Development Programme of China ( No. 2003AA602230) and the National Natural Science Foundation of China(No. 50308007).
文摘A wireless sensor network is proposed to monitor the acceleration of structures for the purpose of structural health monitoring of civil engineering structures. Using commercially available parts, several modules are constructed and integrated into complete wireless sensors and base stations. The communication protocol is designed and the fusion arithmetic of the temperature and acceleration is embedded in the wireless sensor node so that the measured acceleration values are more accurate. Measures are adopted to finish energy optimization, which is an important issue for a wireless sensor network. The test is perfonned on an offshore platform model, and the experimental results are given to show the feasibility of the designed wireless sensor network .
基金supported by the National Natural Science Foundation of China(Nos. 51775483 and 51275447)the Research Innovation Program for College Graduates of Jiangsu Province(No.SJLX_0589)
文摘A linear acceleration sensor,which is inspired by the human balance organ,is designed and prepared. It uses a liquid mass-block and a symmetrical-electrodes metal-core polyvinylidene fluoride fiber(SMPF)as the sensor element. The output signal of the sensor has an exponential relationship with the excitation amplitude of the impacting vibration. It is capable of detecting the amplitude and the correct frequency for sinusoidal excitations using an exponential correlation. The experiments indicate that both the output signal of the sensor and the resonance frequency increase substantially with increasing diameter of the metal core. The first-order resonance frequencies of the sensors with 40,60,and 80 μm diameter metal wires are below 10 Hz,which is near the range of human body motion frequencies.
文摘Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.
基金funded by the National Natural Science Foundation of China(Grant No.11502118).
文摘Intentional electromagnetic interference is a serious threat to the safety of electronic devices. Multiple electromagnetic pulses will be coupled and transmitted to electronic devices through the cables.Accumulative effects are generated, which make it easier for damage to occur in the electronic devices. In this article, the working principle of micro-silicon acceleration sensors is introduced. The accumulative effects of multiple pulses on acceleration sensors is studied by a large number of injection experiments.The accumulation trends of multiple pulses with different pulse numbers and intervals are analyzed. The damaged structures inside abnormal sensor amplifiers were observed via optical microscopy and scanning electron microscopy. The experimental results show that the accumulative effect is strengthened with increased pulse number or decreased pulse interval, and the threshold voltage for multiple pulses on the acceleration sensor decreases. The threshold voltage for a single pulse is 321.57 V. When the pulse interval is 1 μs and the pulse number is 5, the threshold voltage for multiple pulses is 163.42 V,which is reduced by 49.12% compared with a single pulse. These results provide a reference for the damage design of electromagnetic pulse weapons.
文摘This article presents a study of vehicle acceleration distribution at a traffic signal stop line in an urban environment. Accurate representation of vehicle acceleration behavior provides important inputs to traffic simulation models especially when traffic related emissions need to be estimated. A smart eye TDS (traffic data sensor) system was used to record vehicle trajectories, which were extracted to calculate vehicle acceleration profiles. This paper presents the acceleration distributions obtained from over 300 passenger-car acceleration cycles observed on site from the stop line up to a maximum speed of 40 km/h. These distributions are compared with the outputs from a traffic micro simulation tool modeling a similar stop line scenario. The comparison shows that measured accelerations present wider distribution and lower values than the micro simulation. This result highlights the importance of using acceleration distribution calibrated with real-world measured data rather than default values in order to estimate accurate emission levels.
基金Funded by the National Natural Science Foundation of China (No. 60376032 and No. 90406024) and the Key Teacher Foundation of Chongqing University.
文摘Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine. The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration, and there is a linear relationship between the acceleration and the strain. These shed light on using carbon nanotube films as acceleration sensors for many potential applications.
基金Air Force Research Laboratory(AFRL,Grant No.FA9453-18-2-0022)the New Mexico Consortium(NMC,Grant No.2RNA6)the US Department of Transportation Center:Transportation Consortium of South-Central States(TRANSET)Project 19STUNM02(TRANSET,Grant No.8-18-060ST)。
文摘Wireless smart sensors(WSS)process field data and inform inspectors about the infrastructure health and safety.In bridge engineering,inspectors need reliable data about changes in displacements under loads to make correct decisions about repairs and replacements.Access to displacement information in the field and in real-time remains a challenge as inspectors do not see the data in real time.Displacement data from WSS in the field undergoes additional processing and is seen at a different location.If inspectors were able to see structural displacements in real-time at the locations of interest,they could conduct additional observations,creating a new,information-based,decision-making reality in the field.This paper develops a new,human-centered interface that provides inspectors with real-time access to actionable structural data during inspection and monitoring enhanced by augmented reality(AR).It summarizes and evaluates the development and validation of the new human-infrastructure interface in laboratory experiments.The experiments demonstrate that the interface that processes all calculations in the AR device accurately estimates dynamic displacements in comparison with the laser.Using this new AR interface tool,inspectors can observe and compare displacement data,share it across space and time,visualize displacements in time history,and understand structural deflection more accurately through a displacement time history visualization.
基金supported by the National Natural Science Foundation of China(51975058).
文摘In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great impact on the product quality.It is necessary to monitor the status of equipment and to predict fault diagnosis.At present,most of the condition monitoring devices for mechanical equipment have problems of large size,low precision and low energy utilization.A wireless self-powered intelligent spindle vibration acceleration sensor system based on piezoelectric energy harvesting is proposed.Based on rotor sensing technology,a sensor is made to mount on the tool holder and build the related circuit.Firstly,the energy management module collects the mechanical energy in the environment and converts the piezoelectric vibration energy into electric energy to provide 3.3 Vfor the subsequent circuit.The lithium battery supplies the system with additional power and monitors’the power of the energy storage circuit in real-time.Secondly,a three-axis acceleration sensor is used to collect,analyze and filter a series of signal processing operations of the vibration signal in the environment.The signal is sent to the upper computer by wireless transmission.The host computer outputs the corresponding X,Y,and Z channel waveforms and data under the condition of the spindle speed of 50∼2500 r/min with real-time monitoring.The KEIL5 platform is used to develop the system software.The small-size piezoelectric vibration sensor with high-speed,high-energy utilization,high accuracy,and easy installation is used for spindle monitoring.The experiment results show that the sensor system is available and practical.