In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwi...In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results.展开更多
This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stif...This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stiffness was treated as the sum of the spindle modal stiffness and the framework elastic stiffness, based on a novel concept that magnitude of preloads can be controlled by measuring the resonant frequency of a spindle system. By employing an example of a certain type of aircraft simulating rotary table, the modal stiffness was measured on the Agilent 35670A Dynamic Signal Analyzer by experimental modal analysis. The equivalent elastic stiffness was simulated by both finite element analysis in ANSYS? and a curve fitting in MATLAB?. Results showed that the static preloading stiffness of the spindle was 7.2125×107 N/m, and that the optimal preloading force was 120.0848 N. Practical application proved the feasibility of our method.展开更多
Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturb...Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturbance torque of a satellite in outer space.However,at the beginning of the experiment,the disturbance torque caused by the misalignment between the center of gravity of the simulator and the center of rotation of the bearing is the most important factor restricting the use of the space three-axis simulator.In order to solve this problem,it is necessary to set the balance adjustment system on the simulator to compensate the disturbance torque caused by the eccentricity.The paper aims to discuss these issues.Design/methodology/approach–In this paper,a study of L1 adaptive automatic balancing control method for micro satellite with motor without other actuators is proposed.L1 adaptive control algorithm adds the low-pass filter to the control law,which in a certain sense to reduce the high-frequency signal and speed up the response time of the controlled system.At the same time,by estimating the adaptive parameter uncertainty in object,the output error of the state predictor and the controlled object can be stabilized under Lyapunov condition,and the robustness of the system is also improved.The automatic balancing method of PID is also studied in this paper.Findings–Through this automatic balancing mechanism,the gravity disturbance torque can be effectively reduced down to 10−6 Nm,and the automatic balancing time can be controlled within 7 s.Originality/value–This paper introduces an automatic balancing mechanism.The experimental results show that the mechanism can greatly improve the convergence speed while guaranteeing the control accuracy,and ensuring the feasibility of the large angle maneuver of spacecraft three-axis simulator.展开更多
The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g ...The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g for specific scientific experiments.MAIS is mainly composed of a stator and a floater,and payloads are mounted on the floater.Sensing relative motion with respect to the stator fixed on the spacecraft,the floater is isolated from vibration on the stator via control forces and torques generated by electromagnetic actuators.This isolation results in a high-level microgravity environment.Before MAIS was launched into space,its control performance had been simulated on computers and tested by air-bearing platform levitation and aircraft parabolic flight.This article first presents an overview of the MAIS’s hardware system,particularly system structure,measurement sensors,and control actuators.Its system dynamics,state estimation,and control laws are then discussed,followed by the results of computer simulation and engineering tests,including the test of the six-degree-of-freedom motion by aircraft parabolic flight.Simulation and test results verify the accuracy of the control strategy design,effectiveness of the control algorithms,and performance of the entire control system,paving the way for operation of MAIS in space.This article also presents the steps recommended for the control performance simulation and tests of MAIS-like devices.These devices are expected to be used on China’s Space Station for various scientific experiments that require a high-level microgravity environment.展开更多
文摘In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results.
文摘This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stiffness was treated as the sum of the spindle modal stiffness and the framework elastic stiffness, based on a novel concept that magnitude of preloads can be controlled by measuring the resonant frequency of a spindle system. By employing an example of a certain type of aircraft simulating rotary table, the modal stiffness was measured on the Agilent 35670A Dynamic Signal Analyzer by experimental modal analysis. The equivalent elastic stiffness was simulated by both finite element analysis in ANSYS? and a curve fitting in MATLAB?. Results showed that the static preloading stiffness of the spindle was 7.2125×107 N/m, and that the optimal preloading force was 120.0848 N. Practical application proved the feasibility of our method.
基金This work was partially supported by the National Natural Science Foundation of China(Nos 61673208,61374115)the National Key Research and Development Plan(No.2016YFB0500901).
文摘Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturbance torque of a satellite in outer space.However,at the beginning of the experiment,the disturbance torque caused by the misalignment between the center of gravity of the simulator and the center of rotation of the bearing is the most important factor restricting the use of the space three-axis simulator.In order to solve this problem,it is necessary to set the balance adjustment system on the simulator to compensate the disturbance torque caused by the eccentricity.The paper aims to discuss these issues.Design/methodology/approach–In this paper,a study of L1 adaptive automatic balancing control method for micro satellite with motor without other actuators is proposed.L1 adaptive control algorithm adds the low-pass filter to the control law,which in a certain sense to reduce the high-frequency signal and speed up the response time of the controlled system.At the same time,by estimating the adaptive parameter uncertainty in object,the output error of the state predictor and the controlled object can be stabilized under Lyapunov condition,and the robustness of the system is also improved.The automatic balancing method of PID is also studied in this paper.Findings–Through this automatic balancing mechanism,the gravity disturbance torque can be effectively reduced down to 10−6 Nm,and the automatic balancing time can be controlled within 7 s.Originality/value–This paper introduces an automatic balancing mechanism.The experimental results show that the mechanism can greatly improve the convergence speed while guaranteeing the control accuracy,and ensuring the feasibility of the large angle maneuver of spacecraft three-axis simulator.
基金The authors gratefully acknowledge DLR for providing us the opportunity to attend the 27th parabolic flight campaign and Novespace for the support for the test of MAIS by the Airbus A310 ZERO-GThe authors would also like to thank Weijia Ren,Xiaoru Sang,Shimeng Lv,Peng Yang,Yu-e Gao,Lingcai Song,Mengxi Yu,Boqi Kang,Yanlin Zhou,and Anping Wang,who have contributed significantly to the MAIS project.
文摘The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g for specific scientific experiments.MAIS is mainly composed of a stator and a floater,and payloads are mounted on the floater.Sensing relative motion with respect to the stator fixed on the spacecraft,the floater is isolated from vibration on the stator via control forces and torques generated by electromagnetic actuators.This isolation results in a high-level microgravity environment.Before MAIS was launched into space,its control performance had been simulated on computers and tested by air-bearing platform levitation and aircraft parabolic flight.This article first presents an overview of the MAIS’s hardware system,particularly system structure,measurement sensors,and control actuators.Its system dynamics,state estimation,and control laws are then discussed,followed by the results of computer simulation and engineering tests,including the test of the six-degree-of-freedom motion by aircraft parabolic flight.Simulation and test results verify the accuracy of the control strategy design,effectiveness of the control algorithms,and performance of the entire control system,paving the way for operation of MAIS in space.This article also presents the steps recommended for the control performance simulation and tests of MAIS-like devices.These devices are expected to be used on China’s Space Station for various scientific experiments that require a high-level microgravity environment.