Stochastic noises of fiber optic gyroscope (FOG) mainly contain white noise and fractal noise whose long-term dependent component causes FOG a rather slow drift. In order to eliminate this component, a two-step filt...Stochastic noises of fiber optic gyroscope (FOG) mainly contain white noise and fractal noise whose long-term dependent component causes FOG a rather slow drift. In order to eliminate this component, a two-step filtering methodology is proposed. Firstly, fractional differencing (FD) method is introduced to trans-form fractal noise into fractional white noise based on the estima-tion of Hurst exponent for long-term dependent fractal process, which together with the existing white noise make up of a gener-alized white noise. Further, an improved denoising algorithm of wavelet maxima is developed to suppress the generalized white noise. Experimental results show that the basic noise terms of FOG greatly decrease, and especially the slow drift is restrained effectively. The proposed methodology provides a promising ap-proach for filtering long-term dependent fractal noise.展开更多
This study proposes a novel interferometric fiber optic gyroscope(IFOG)based on an integrated optical chip,application-specific integrated circuit,and small-diameter sensing coil.The overall size and weight of the pro...This study proposes a novel interferometric fiber optic gyroscope(IFOG)based on an integrated optical chip,application-specific integrated circuit,and small-diameter sensing coil.The overall size and weight of the prototype are 30 mm × 30 mm ×30 mm and 68 g,respectively,making it the smallest closed-loop IFOG,to the best of our knowledge.A static experiment shows that the bias stability of the integrated IFOG is very close to the theoretical accuracy limit determined by the fiber coil and can satisfy the requirements of near-navigation-grade compact inertial navigation systems.展开更多
We present a near-navigation-grade interferometric fiber optic gyroscope(IFOG)based on an integrated optical chip.The chip comprises a light source,a photodiode,and a 3 dB coupler within an area of 48 mm^(2).By interr...We present a near-navigation-grade interferometric fiber optic gyroscope(IFOG)based on an integrated optical chip.The chip comprises a light source,a photodiode,and a 3 dB coupler within an area of 48 mm^(2).By interrogating with an integrated optical modulator and a small-diameter sensing coil,the IFOG is realized.This allows for a significant reduction in size,weight,power consumption,and cost.Preliminary performance data of a gyro proto type exhibits 0.018 deg/h bias instability.展开更多
基金supported by Aviation Science Foundation(20070851011).
文摘Stochastic noises of fiber optic gyroscope (FOG) mainly contain white noise and fractal noise whose long-term dependent component causes FOG a rather slow drift. In order to eliminate this component, a two-step filtering methodology is proposed. Firstly, fractional differencing (FD) method is introduced to trans-form fractal noise into fractional white noise based on the estima-tion of Hurst exponent for long-term dependent fractal process, which together with the existing white noise make up of a gener-alized white noise. Further, an improved denoising algorithm of wavelet maxima is developed to suppress the generalized white noise. Experimental results show that the basic noise terms of FOG greatly decrease, and especially the slow drift is restrained effectively. The proposed methodology provides a promising ap-proach for filtering long-term dependent fractal noise.
文摘This study proposes a novel interferometric fiber optic gyroscope(IFOG)based on an integrated optical chip,application-specific integrated circuit,and small-diameter sensing coil.The overall size and weight of the prototype are 30 mm × 30 mm ×30 mm and 68 g,respectively,making it the smallest closed-loop IFOG,to the best of our knowledge.A static experiment shows that the bias stability of the integrated IFOG is very close to the theoretical accuracy limit determined by the fiber coil and can satisfy the requirements of near-navigation-grade compact inertial navigation systems.
文摘We present a near-navigation-grade interferometric fiber optic gyroscope(IFOG)based on an integrated optical chip.The chip comprises a light source,a photodiode,and a 3 dB coupler within an area of 48 mm^(2).By interrogating with an integrated optical modulator and a small-diameter sensing coil,the IFOG is realized.This allows for a significant reduction in size,weight,power consumption,and cost.Preliminary performance data of a gyro proto type exhibits 0.018 deg/h bias instability.