Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.T...Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.展开更多
In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter e...In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.展开更多
Recently,there is an increasing requirement for controlling linear motion up to a few hundred of millimeter strokes in the area of the liquid crystal display(LCD) production equipment.The requirements of the motion sy...Recently,there is an increasing requirement for controlling linear motion up to a few hundred of millimeter strokes in the area of the liquid crystal display(LCD) production equipment.The requirements of the motion system for LCD production equipment are high acceleration and high velocity with positioning accuracy.To satisfy these requirements,it has to be designed with the high-thrust force and low velocity ripple.In this work, high-thrust and double-sided linear synchronous motor (LSM)module is proposed and the developed high-thrust and double-sided LSM module is verified by performance test.展开更多
The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected syst...The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected systems is outlined by taking into account the sequential structure of the connnections. The paper extends the, coordinate, module-theoretic studies from the elementary algebraic systems theory to include the case oj such linear interconnected systems which need not to be controllable or observable. Also, the properties of controllability and observability, the decoupling zeros and the signal Making issues are characterized.展开更多
Considering that the fluid is inviscid and incompressible and the flow is irrotational in a fixed frame of reference and using the multiple scale analysis method, we derive a nonlinear Schrodinger equation(NLSE) descr...Considering that the fluid is inviscid and incompressible and the flow is irrotational in a fixed frame of reference and using the multiple scale analysis method, we derive a nonlinear Schrodinger equation(NLSE) describing the evolution dynamics of gravity-capillary wavetrains in arbitrary constant depth. The gravity-capillary waves(GCWs) are influenced by a linear shear flow(LSF) which consists of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of GCWs with the LSF is analyzed using the NLSE. The MI is effectively modified by the LSF. In infinite depth, there are four asymptotes which are the boundaries between MI and modulational stability(MS) in the instability diagram. In addition, the dimensionless free surface elevation as a function of time for different dimensionless water depth,surface tension, uniform flow and vorticity is exhibited. It is found that the decay of free surface elevation and the steepness of free surface amplitude change over time, which are greatly affected by the water depth, surface tension, uniform flow and vorticity.展开更多
Considering high-order digital modulation schemes, the bottleneck in consumer products is the detector rather than the modulator. The complexity of the optimal a posteriori probability (APP) detector increases expon...Considering high-order digital modulation schemes, the bottleneck in consumer products is the detector rather than the modulator. The complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of modulated bits per data symbol. Thus, it is necessary to develop low-complexity detection algorithms with an APP-like performance, especially when performing iterative detection, for example in conjunction with bit interleaved coded modulation. We show that a special case of superposition modulation, dubbed Direct Superposition Modulation (DSM), is particularly suitable for complexity reduction at the receiver side. As opposed to square QAM, DSM achieves capacity without active signal shaping. The main contribution is a low-cost detection algorithm for DSM, which enables iterative detection by taking a priori information into account. This algorithm exploits the approximate piecewise linear behavior of the soft outputs of an APP detector over the entire range of detector input values. A theoretical analysis and simulation results demonstrate that at least max-log APP performance can be reached, while the complexity is significantly reduced compared to classical APP detection.展开更多
We propose the quadratic constrained formulas for the design of linear phase cosine modulated paraunitary filter banks given in references . Using these formulae, we can, directly, optimize the prototype filter coeff...We propose the quadratic constrained formulas for the design of linear phase cosine modulated paraunitary filter banks given in references . Using these formulae, we can, directly, optimize the prototype filter coefficients in a quadratic form. A design example is also given to demonstrate these formulae in this paper.展开更多
Based on the characteristics of gradual change style seismic signal onset which has more high frequency signal components but less magnitude, this paper selects Gauss linear frequency modulation wavelet as base functi...Based on the characteristics of gradual change style seismic signal onset which has more high frequency signal components but less magnitude, this paper selects Gauss linear frequency modulation wavelet as base function to study the change characteristics of Gauss linear frequency modulation wavelet transform with difference wavelet and signal parameters, analyzes the error origin of seismic phases identification on the basis of Gauss linear frequency modulation wavelet transform, puts forward a kind of new method identifying gradual change style seismic phases with background noise which is called fixed scale wavelet transform ratio, and presents application examples about simulation digital signal and actual seismic phases recording onsets identification.展开更多
Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis me...Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis method. The gravity waves are influenced by a linear shear flow, which is composed of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of the NLSE is analyzed, and the region of the MI for gravity waves(the necessary condition for existence of freak waves) is identified. In this work, the uniform background flows along or against wave propagation are referred to as down-flow and up-flow, respectively. Uniform up-flow enhances the MI, whereas uniform down-flow reduces it. Positive vorticity enhances the MI, while negative vorticity reduces it. Hence, the influence of positive(negative)vorticity on MI can be balanced out by that of uniform down(up) flow. Furthermore, the Peregrine breather solution of the NLSE is applied to freak waves. Uniform up-flow increases the steepness of the free surface elevation, while uniform down-flow decreases it. Positive vorticity increases the steepness of the free surface elevation, whereas negative vorticity decreases it.展开更多
We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linea...We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linearity fiber (PMNL-PFC). Our simulations are taking into account different amplitude and frequency modulations of the PMNL-PFC. A coupler for coupling whose length is Lc = 1.8 cm, the transmission characteristics, the compression factor, the crosstalk (Xtalk) and extinction ratio (Xratio) levels of the first order solitons were studied for low to high pump energies considering 2Lc. By an analysis on the reference channel (channel 2), it is observed that at low modulation frequencies an increase occurs in the switching power increasing transmission efficiency. For high modulation frequencies, the transmitted energy efficiency loses. The switching pulses are stronger for low frequency and high amplitude modulation. The Xtalk is a function of the measurement made on the secondary channel (channel 1). It was observed that this unwanted high-frequency energy increases to lessen the measure of the amplitude modulation. In summary, we have demonstrated that introduction of a non-linearity profile takes the periodically modulated PMNL-PFC to strong variations at transmission efficiency, Xtalk, Xratio a function of frequency and modulation amplitude and the input power.展开更多
A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that ...A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that the original form of frequency function deviated from idealized linear slope is retrieved by means of spectrum analysis. Consequently,the linearity of the LFM signal is determined. The formulation is performed based on the principle that an angle-modulated signal can be approximated by an amplitude-modulated signal if the modulation coefficient is sufficiently small. To examine the validity of the procedure and to study the effect of each parameter on the accuracy of measurement, a number of computer simulations has been made. The results of simulation show that the error of the measurement is less than 2%.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(RGP.2/111/43).
文摘Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61973037)。
文摘In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.
基金supported by the ministry of education,science technology [MEST] and the ministry of knowledge economy [MKE] through the fostering project of the industrial-academic cooperation centered university.
文摘Recently,there is an increasing requirement for controlling linear motion up to a few hundred of millimeter strokes in the area of the liquid crystal display(LCD) production equipment.The requirements of the motion system for LCD production equipment are high acceleration and high velocity with positioning accuracy.To satisfy these requirements,it has to be designed with the high-thrust force and low velocity ripple.In this work, high-thrust and double-sided linear synchronous motor (LSM)module is proposed and the developed high-thrust and double-sided LSM module is verified by performance test.
文摘The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected systems is outlined by taking into account the sequential structure of the connnections. The paper extends the, coordinate, module-theoretic studies from the elementary algebraic systems theory to include the case oj such linear interconnected systems which need not to be controllable or observable. Also, the properties of controllability and observability, the decoupling zeros and the signal Making issues are characterized.
基金Project supported by the National Natural Science Foundation of China(Grant No.41830533)the National Key Research and Development Program of China(Grant Nos.2016YFC1401404 and 2017YFA0604102).
文摘Considering that the fluid is inviscid and incompressible and the flow is irrotational in a fixed frame of reference and using the multiple scale analysis method, we derive a nonlinear Schrodinger equation(NLSE) describing the evolution dynamics of gravity-capillary wavetrains in arbitrary constant depth. The gravity-capillary waves(GCWs) are influenced by a linear shear flow(LSF) which consists of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of GCWs with the LSF is analyzed using the NLSE. The MI is effectively modified by the LSF. In infinite depth, there are four asymptotes which are the boundaries between MI and modulational stability(MS) in the instability diagram. In addition, the dimensionless free surface elevation as a function of time for different dimensionless water depth,surface tension, uniform flow and vorticity is exhibited. It is found that the decay of free surface elevation and the steepness of free surface amplitude change over time, which are greatly affected by the water depth, surface tension, uniform flow and vorticity.
文摘Considering high-order digital modulation schemes, the bottleneck in consumer products is the detector rather than the modulator. The complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of modulated bits per data symbol. Thus, it is necessary to develop low-complexity detection algorithms with an APP-like performance, especially when performing iterative detection, for example in conjunction with bit interleaved coded modulation. We show that a special case of superposition modulation, dubbed Direct Superposition Modulation (DSM), is particularly suitable for complexity reduction at the receiver side. As opposed to square QAM, DSM achieves capacity without active signal shaping. The main contribution is a low-cost detection algorithm for DSM, which enables iterative detection by taking a priori information into account. This algorithm exploits the approximate piecewise linear behavior of the soft outputs of an APP detector over the entire range of detector input values. A theoretical analysis and simulation results demonstrate that at least max-log APP performance can be reached, while the complexity is significantly reduced compared to classical APP detection.
文摘We propose the quadratic constrained formulas for the design of linear phase cosine modulated paraunitary filter banks given in references . Using these formulae, we can, directly, optimize the prototype filter coefficients in a quadratic form. A design example is also given to demonstrate these formulae in this paper.
基金State Natural Science Foundation of China (40074007) Science and Technology Key Project during the Ten-Year Plan(2001BA601B02-03-06) and the Natural Science Foundation of Shandong Province (Y2000E08).
文摘Based on the characteristics of gradual change style seismic signal onset which has more high frequency signal components but less magnitude, this paper selects Gauss linear frequency modulation wavelet as base function to study the change characteristics of Gauss linear frequency modulation wavelet transform with difference wavelet and signal parameters, analyzes the error origin of seismic phases identification on the basis of Gauss linear frequency modulation wavelet transform, puts forward a kind of new method identifying gradual change style seismic phases with background noise which is called fixed scale wavelet transform ratio, and presents application examples about simulation digital signal and actual seismic phases recording onsets identification.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFC1401404 and 2017YFA0604102)the National Natural Science Foundation of China(Grant No.41830533)
文摘Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis method. The gravity waves are influenced by a linear shear flow, which is composed of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of the NLSE is analyzed, and the region of the MI for gravity waves(the necessary condition for existence of freak waves) is identified. In this work, the uniform background flows along or against wave propagation are referred to as down-flow and up-flow, respectively. Uniform up-flow enhances the MI, whereas uniform down-flow reduces it. Positive vorticity enhances the MI, while negative vorticity reduces it. Hence, the influence of positive(negative)vorticity on MI can be balanced out by that of uniform down(up) flow. Furthermore, the Peregrine breather solution of the NLSE is applied to freak waves. Uniform up-flow increases the steepness of the free surface elevation, while uniform down-flow decreases it. Positive vorticity increases the steepness of the free surface elevation, whereas negative vorticity decreases it.
文摘We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linearity fiber (PMNL-PFC). Our simulations are taking into account different amplitude and frequency modulations of the PMNL-PFC. A coupler for coupling whose length is Lc = 1.8 cm, the transmission characteristics, the compression factor, the crosstalk (Xtalk) and extinction ratio (Xratio) levels of the first order solitons were studied for low to high pump energies considering 2Lc. By an analysis on the reference channel (channel 2), it is observed that at low modulation frequencies an increase occurs in the switching power increasing transmission efficiency. For high modulation frequencies, the transmitted energy efficiency loses. The switching pulses are stronger for low frequency and high amplitude modulation. The Xtalk is a function of the measurement made on the secondary channel (channel 1). It was observed that this unwanted high-frequency energy increases to lessen the measure of the amplitude modulation. In summary, we have demonstrated that introduction of a non-linearity profile takes the periodically modulated PMNL-PFC to strong variations at transmission efficiency, Xtalk, Xratio a function of frequency and modulation amplitude and the input power.
文摘A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that the original form of frequency function deviated from idealized linear slope is retrieved by means of spectrum analysis. Consequently,the linearity of the LFM signal is determined. The formulation is performed based on the principle that an angle-modulated signal can be approximated by an amplitude-modulated signal if the modulation coefficient is sufficiently small. To examine the validity of the procedure and to study the effect of each parameter on the accuracy of measurement, a number of computer simulations has been made. The results of simulation show that the error of the measurement is less than 2%.