A method to evaluate the properties of turbulent flow in proximity to the vehicle and close to the ground surface has been elaborated.Numerical simulations have been performed on the basis of the Unsteady Reynolds-ave...A method to evaluate the properties of turbulent flow in proximity to the vehicle and close to the ground surface has been elaborated.Numerical simulations have been performed on the basis of the Unsteady Reynolds-averaged Navier-Stokes equations(URANS)written with respect to an arbitrary curvilinear coordinate system.These equations have been solved using the Spalart-Allmaras differential one-parametric turbulence model.The method of artificial compressibility has been used to improve the coupling of pressure and velocity in the framework of a finite volume approach.Time-averaged distributions of pressure fields,velocity components,streamlines in the entire area and near the tractor-trailer,as well as integral and distributed characteristic parameters(such as coefficients of pressure,friction and drag force)are presented.According to our results,the turbulent flow accelerates in the area of the tractor cabin and in the gap between surfaces.Above the driver’s cabin,a pressure drop occurs due to a sharp acceleration of flow in this area.Downstream,pressure is restored and becomes almost constant in proximity to the edge of the trailer.The dimensions of the separation area exceed the length of the transport system several times.Though agreement with experimental results is relatively limited due to the two-dimensional nature of the numerical simulations,the present approach succeeds in identifying the main physical effects involved in the considered dynamics.It might be used in future studies for initial approximate assessments of the influence of the vehicle shape on its aerodynamic characteristics.展开更多
An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be ...An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be considered as an uncertain system. Cornering stiffness of front and rear wheels and external disturbances are varied in a limited range. The model-following variable structure control method is used to control both front and rear wheels steering operations of the vehicle, so that steering responses of the vehicle follow from those of the reference model. By numerical results obtained from computer simulation, it is demonstrated that the control system model can cope with the effects of parameter perturbations and outside disturbances.展开更多
Tractor-trailer vehicles,which are composed of a car-like tractor towing a passive trailer,have been widely deployed in the transportation industry,and trajectory planning is a critical step in enabling such a system ...Tractor-trailer vehicles,which are composed of a car-like tractor towing a passive trailer,have been widely deployed in the transportation industry,and trajectory planning is a critical step in enabling such a system to drive autonomously.Owing to the properties of being highly nonlinear and nonholonomic with complex dynamics,the tractor-trailer system poses great challenges to the development of motion-planning algorithms.In this study,an indirect trajectory planning framework for a tractor-trailer vehicle under on-road driving is presented to deal with the problem that the traditional planning framework cannot consider the feasibility and quality simultaneously in real-time trajectory generation of the tractor-trailer vehicle.The indirect planning framework can easily handle complicated tractor-trailer dynamics and generate high-quality,obstacle-free trajectory using quintic polynomial spline,speed profile optimization,forward simulation,and properly designed cost functions.Simulations under different driving scenarios and trajectories with different driving requirements are conducted to validate the performance of the proposed framework.展开更多
文摘A method to evaluate the properties of turbulent flow in proximity to the vehicle and close to the ground surface has been elaborated.Numerical simulations have been performed on the basis of the Unsteady Reynolds-averaged Navier-Stokes equations(URANS)written with respect to an arbitrary curvilinear coordinate system.These equations have been solved using the Spalart-Allmaras differential one-parametric turbulence model.The method of artificial compressibility has been used to improve the coupling of pressure and velocity in the framework of a finite volume approach.Time-averaged distributions of pressure fields,velocity components,streamlines in the entire area and near the tractor-trailer,as well as integral and distributed characteristic parameters(such as coefficients of pressure,friction and drag force)are presented.According to our results,the turbulent flow accelerates in the area of the tractor cabin and in the gap between surfaces.Above the driver’s cabin,a pressure drop occurs due to a sharp acceleration of flow in this area.Downstream,pressure is restored and becomes almost constant in proximity to the edge of the trailer.The dimensions of the separation area exceed the length of the transport system several times.Though agreement with experimental results is relatively limited due to the two-dimensional nature of the numerical simulations,the present approach succeeds in identifying the main physical effects involved in the considered dynamics.It might be used in future studies for initial approximate assessments of the influence of the vehicle shape on its aerodynamic characteristics.
文摘An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be considered as an uncertain system. Cornering stiffness of front and rear wheels and external disturbances are varied in a limited range. The model-following variable structure control method is used to control both front and rear wheels steering operations of the vehicle, so that steering responses of the vehicle follow from those of the reference model. By numerical results obtained from computer simulation, it is demonstrated that the control system model can cope with the effects of parameter perturbations and outside disturbances.
基金the National Natural Science Foun-dation of China(No.61873165/U1764264)the Shanghai Automotive Industry Science and Technology Development Foundation(No.1807)。
文摘Tractor-trailer vehicles,which are composed of a car-like tractor towing a passive trailer,have been widely deployed in the transportation industry,and trajectory planning is a critical step in enabling such a system to drive autonomously.Owing to the properties of being highly nonlinear and nonholonomic with complex dynamics,the tractor-trailer system poses great challenges to the development of motion-planning algorithms.In this study,an indirect trajectory planning framework for a tractor-trailer vehicle under on-road driving is presented to deal with the problem that the traditional planning framework cannot consider the feasibility and quality simultaneously in real-time trajectory generation of the tractor-trailer vehicle.The indirect planning framework can easily handle complicated tractor-trailer dynamics and generate high-quality,obstacle-free trajectory using quintic polynomial spline,speed profile optimization,forward simulation,and properly designed cost functions.Simulations under different driving scenarios and trajectories with different driving requirements are conducted to validate the performance of the proposed framework.