期刊文献+
共找到182篇文章
< 1 2 10 >
每页显示 20 50 100
Quantifying the Role of the Eddy Transfer Coefficient in Simulating the Response of the Southern Ocean Meridional Overturning Circulation to Enhanced Westerlies in a Coarse-resolution Model
1
作者 Yiwen LI Hailong LIU +3 位作者 Pengfei LIN Eric PCHASSIGNET Zipeng YU Fanghua WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1853-1867,共15页
This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy ... This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy transfer coefficient(κ).κ is a parameter commonly used to represent the velocities induced by unresolved eddies.Our findings reveal that a stratification-dependent κ,incorporating spatiotemporal variability,leads to the most robust eddy-induced MOC response,capturing 82% of the reference eddy-resolving simulation.Decomposing the eddy-induced velocity into its vertical variation(VV) and spatial structure(SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term,while the introduced VV term weakens the response.Furthermore,the temporal variability of the stratification-dependent κ emerges as a key factor in enhancing the eddy compensation response to intensified westerlies.The experiment with stratification-dependent κ exhibits a more potent eddy compensation response compared to the constant κ,attributed to the structure of κ and the vertical variation of the density slope.These results underscore the critical role of accurately representing κ in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism. 展开更多
关键词 eddy transfer coefficient mesoscale eddy parameterization enhanced westerlies Southern Ocean meridional Overturning circulation ocean model
下载PDF
Numerical simulations of Atlantic meridional overturning circulation(AMOC)from OMIP experiments and its sensitivity to surface forcing
2
作者 Xiaowei WANG Yongqiang YU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期454-467,共14页
Atlantic meridional overturning circulation(AMOC)plays an important role in transporting heat meridionally in the Earth’s climate system and is also a key metrical tool to verify oceanic general circulation models.Tw... Atlantic meridional overturning circulation(AMOC)plays an important role in transporting heat meridionally in the Earth’s climate system and is also a key metrical tool to verify oceanic general circulation models.Two OMIP(Ocean Model Intercomparison Project phase 1 and 2)simulations with LICOM3(version 3 of the LASG/IAP Climate System Ocean Model)developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics(IAP),are compared in this study.Both simulations well reproduce the fundamental characteristics of the AMOC,but the OMIP1 simulation shows a significantly stronger AMOC than the OMIP2 simulation.Because the LICOM3 configurations are identical between these two experiments,any differences between them must be attributed to the surface forcing data.Further analysis suggests that sea surface salinity(SSS)differences should be mainly responsible for the enhanced AMOC in the OMIP1 simulation,but sea surface temperature(SST)also play an unignorable role in modulating AMOC.In the North Atlantic,where deep convection occurs,the SSS in OMIP1 is more saline than that in OMIP1.We find that in the major region of deep convection,the change of SSS has more significant effect on density than the change of SST.As a result,the SSS was more saline than that in OMIP2,leading to stronger deep convection and subsequently intensify the AMOC.We conduct a series of numerical experiments with LICOM3,and the results confirmed that the changes in SSS have more significant effect on the strength of AMOC than the changes in SST. 展开更多
关键词 oceanic general circulation model(OGCM) Atlantic meridional overturning(AMOC) surface forcing deep convection
下载PDF
Evaluation of the Mechanisms Acting on the Atlantic Meridional Overturning Circulation in CESM2 for the 1pctCO_(2) Experiment
3
作者 Lívia Sancho Elisa Passos +2 位作者 Marcio Cataldi Luiz Paulo de Freitas Assad Luiz Landau 《Journal of Atmospheric Science Research》 2024年第1期40-58,共19页
The Atlantic Meridional Overturning Circulation(AMOC)is a crucial component of the Earth’s climate system due to its fundamental role in heat distribution,carbon and oxygen transport,and the weather.Other climate com... The Atlantic Meridional Overturning Circulation(AMOC)is a crucial component of the Earth’s climate system due to its fundamental role in heat distribution,carbon and oxygen transport,and the weather.Other climate components,such as the atmosphere and sea ice,influence the AMOC.Evaluating the physical mechanisms of those interactions is paramount to increasing knowledge about AMOC’s functioning.In this study,the authors used outputs from the Community Earth System Model version 2 and observational data to investigate changes in theAMOC and the associated physical processes.Two DECK experiments were evaluated:piControl and 1pctCO_(2),with an annual increase of 1%of atmospheric CO_(2).The analysis revealed a significant decrease in the AMOC,associated with changes in mixed layer depth and buoyancy in high latitudes of the North Atlantic,resulting in the shutdown of deep convection and potentially affecting the formation of North Atlantic Deep Water and Antarctic Bottom Water.A vital aspect observed in this study is the association between increased runoff and reduced water evaporation,giving rise to a positive feedback process.Consequently,the rates of freshwater spreading have intensified during this period,which could lead to an accelerated disruption of the AMOC beyond the projections of existing models. 展开更多
关键词 AMOC meridional cell Climate change Deep circulation CESM2 results CMIP6
下载PDF
The three-dimensional structure and seasonal variation of the North Pacific meridional overturning circulation 被引量:7
4
作者 LIU Hongwei ZHANG Qilong +1 位作者 DUAN Yongliang HOU Yijun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2011年第3期33-42,共10页
The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data.... The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data. The NPMOC displays a multi-cell structure with four cells in the North Pacific altogether. The TC and the STC are a strong clockwise meridional cell in the low latitude ocean and a weaker clockwise meridional cell between 7°N and 18°N, respectively, while the DTC and the subpolar cell are a weaker anticlockwise meridional cell between 3°N and 15°N and a weakest anticlockwise meridional cell between 35°N and 50°N, respectively. The DTC, the TC and the STC are all of very strong seasonal variations. As to the DTC, the southward transport is strongest in fall and weakest in spring. For the TC, the northward transport is strongest in winter and weakest in spring, while the southward transport is strongest in fall and weakest in spring, which is associated with the strong southward fiow of the DTC in fall. As the STC, the northward transport is strongest in winter and weakest in summer, while the southward transport is strongest in summer and weakest in spring. This seasonal difference may be associated with the DTC. The zonal wind stress and the east-west slope of sea level play important roles in the seasonal variations of the TC, the STC and the DTC. 展开更多
关键词 North Pacific meridional overturning circulation three-dimensional structure seasonal variation
下载PDF
The Shallow Meridional Overturning Circulation in the Northern Indian Ocean and Its Interannual Variability 被引量:5
5
作者 胡瑞金 刘秦玉 +2 位作者 王启 J.Stuart GODFREY 孟祥凤 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第2期220-229,共10页
The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years ... The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987-1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately r 展开更多
关键词 meridional overturning circulation northern Indian Ocean interannual variability wind stress circulation index
下载PDF
Shuram-Wonoka carbon isotope excursion:Ediacaran revolution in the world ocean's meridional overturning circulation 被引量:3
6
作者 George E.Williams Phillip W.Schmidt 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第2期391-402,共12页
The late Ediacaran Shuram-Wonoka excursion, with δ^(13)C_(carb) values as low as-12‰(PDB) in marineshelf deposits and spanning up to 10 Myr, is the deepest and most protracted δ^(13)C_(carb) negative anomaly recogn... The late Ediacaran Shuram-Wonoka excursion, with δ^(13)C_(carb) values as low as-12‰(PDB) in marineshelf deposits and spanning up to 10 Myr, is the deepest and most protracted δ^(13)C_(carb) negative anomaly recognised in Earth history. The excursion formed on at least four continents in low(≤32°) palaeolatitudes, and in China is associated with a major phosphogenic event. Global and intrabasinal correlation, magnetostratigraphy, isotope conglomerate tests and further geochemical data are consistent with a primary or syn-depositional origin for the excursion. Continental-margin phosphorites are generated by oceanic upwelling driven by surface winds, and δ^(13)C_(carb) negative anomalies are explicable by oceanic upwelling of 13 C-depleted deep oceanic waters, arguing that a feature common to these exceptional Ediacaran events was unprecedented perturbation of the world ocean. These events occurred during the transition from an alien Proterozoic world marked by low-palaeolatitude glaciation near sea level and strong seasonality to the familiar Phanerozoic Earth with circum-polar glaciation and temperate climate, suggesting that the Shuram-Wonoka excursion is related to this profound change in Earth's climate system. Of various hypotheses for Proterozoic low-palaeolatitude glaciation, only the high obliquity(>54°) hypothesis, which posits secular decrease in obliquity to near the present-day value(23.5°) during the Ediacaran, predicts an unparalleled revolution in the Ediacaran world ocean. The obliquity controls the sense of the world ocean's meridional overturning circulation, which today is driven by the sinking of cold, dense water at the poles and upwelling driven by zonal surface winds.When the decreasing obliquity passed the critical value of 54° during the Ediacaran the meridional temperature gradient reversed, with the equator becoming warmer than the poles and Hadley lowlatitude(<30°-35°) atmospheric zonal circulation reversing. This reversal of the temperature gradient is unique to the Ediacaran Period and caused reversal of the oceanic meridional overturning circulation,with upwelling of anoxic, 13 C-depleted deep oceanic waters producing a deeply negative and protractedδ^(13)C_(carb) signature on late Ediacaran marine-shelf deposits. 展开更多
关键词 EDIACARAN Shuram-Wonoka carbon isotope excursion Oceanic meridional circulation Atmospheric circulation Proterozoic paleoclimate Obliquity of the ecliptic
下载PDF
Revisiting Effect of Ocean Diapycnal Mixing on Atlantic Meridional Overturning Circulation Recovery in a Freshwater Perturbation Simulation 被引量:5
7
作者 于雷 郜永祺 +1 位作者 王会军 Helge DRANGE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期597-609,共13页
The effects of ocean density vertical stratification and related ocean mixing on the transient response of the Atlantic meridional overturning circulation (AMOC) are examined in a freshwater perturbation simulation ... The effects of ocean density vertical stratification and related ocean mixing on the transient response of the Atlantic meridional overturning circulation (AMOC) are examined in a freshwater perturbation simulation using the Bergen Climate Model (BCM). The results presented here are based on the model outputs of a previous freshwater experiment: a 300-year control integration (CTRL), a freshwater integration (FW1) which started after 100 years of running the CTRL with an artificially and continuously threefold increase in the freshwater flux to the Greenland-Iceland-Norwegian (GIN) Seas and the Arctic Ocean throughout the following 150-year simulation. In FW1, the transient response of the AMOC exhibits an initial decreasing of about 6 Sv (1 Sv=106 m3 s^-1) over the first 50-year integration and followed a gradual recovery during the last 100-year integration. Our results show that the vertical density stratification as the crucial property of the interior ocean plays an important role for the transient responses of AMOC by regulating the convective and diapycnal mixings under the enhanced freshwater input to northern high latitudes in BCM in which the ocean diapycnal mixing is stratification-dependent. The possible mechanism is also investigated in this paper. 展开更多
关键词 North Atlantic meridional overturning circulation enhanced freshwater forcing diapycnal mixing
下载PDF
Transient Characteristics of Residual Meridional Circulation during Stratospheric Sudden Warming 被引量:2
8
作者 邓淑梅 陈月娟 +2 位作者 黄勇 罗涛 毕云 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第3期551-563,共13页
The residual meridional circulation derived from the transformed Eulerian-mean thermodynamic equation and continuity equation can be separated into two parts,the slowly varying diabatic circulation and the transient c... The residual meridional circulation derived from the transformed Eulerian-mean thermodynamic equation and continuity equation can be separated into two parts,the slowly varying diabatic circulation and the transient circulation,as demonstrated by others.We calculated and composite-analyzed the transient and diabatic circulation for 14 stratospheric sudden warming(SSW) events from 1979-2002 by using the daily ECMWF reanalysis data.Specifically,the transient residual meridional circulation was calculated both with and without inclusion of the eddy heat transport term in the transformed Eulerian-mean thermodynamic equation to investigate the importance of the eddy heat transport term.The results showed that calculations of transient residual meridional circulation present rapid variations during SSWs,with or without inclusion of the eddy heat transport term.Although the patterns of transient residual meridional circulation with the eddy heat transport term were similar to that without the eddy heat transport term during SSW,the magnitudes in the upper stratosphere and high-latitude regions differed.As for the diabatic circulation,its daily variations were small during SSW events,and its patterns were in agreement with its monthly average. 展开更多
关键词 stratospheric sudden warming transient residual meridional circulation composite analysis
下载PDF
Local Meridional Circulation and Deserts 被引量:2
9
作者 刘平 吴国雄 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第5期864-872,共9页
This paper investigates the dry climatology of Sahara and Northwest China deserts from the viewpoint of local meridional circulation with Xie and Arkin rainfall dada and NCAR/NCEP reanalysis data. Results show that th... This paper investigates the dry climatology of Sahara and Northwest China deserts from the viewpoint of local meridional circulation with Xie and Arkin rainfall dada and NCAR/NCEP reanalysis data. Results show that there are very dry centers with annual rainfall less than 50 mm over these two deserts while the rainy seasons are very different. In the south part of Sahara desert center and Northwest China desert, over 70% rainfall takes place in June, July and August (JJA). While in the north part of Sahara, rainfall mainly concentrates in December, January and February (DJF). The local biosphere-radiation mechanism proposed by Charney cannot explain the climatology of such very dry centers. Neither can the monsoon-desert mechanism proposed by Rodwell and Hoskins do for the strongest descent center is much more northward than the driest center over Sahara in JJA. From the viewpoint of local meridional circulation, the dryness climatology of Sahara and Northwest China deserts is investigated and compared. It is shown that in DJF, descent of local meridional circulation dominates the two deserts and very dry climate is unavoidable although the relative wet season is weak over the northern part of Sahara due to Mediterranean climate. While in JJA, there is ascent over the two deserts especially over Northwest China. Such ascent can explain the rainy season in south part of Sahara and Northwest China deserts. However, it is the local meridional circulation that takes strong and dry northerly from higher latitudes. The northerly either takes little moisture to the centers or prevents deep and strong convection over the centers. Such local meridional circulation leads to the dry climatology over the two deserts. 展开更多
关键词 deserts local meridional circulation
下载PDF
Interannual variability in the North Pacific meridional overturning circulation 被引量:3
10
作者 刘洪伟 张启龙 +1 位作者 侯一筠 段永亮 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第3期665-680,共16页
We analyzed the temporal and spatial variation, and interannual variability of the North Pacific meridional overturning circulation using an empirical orthogonal function method, and calculated mass transport using Si... We analyzed the temporal and spatial variation, and interannual variability of the North Pacific meridional overturning circulation using an empirical orthogonal function method, and calculated mass transport using Simple Ocean Data Assimilation Data from 1958-2008. The meridional streamfunction field in the North Pacific tilts N-S; the Tropical Cell (TC), Subtropical Cell (STC), and Deep Tropical Cell (DTC) may be in phase on an annual time scale; the TC and the STC are out of phase on an interannual time scale, but the interannual variability of the DTC is complex. The TC and STC interannual variability is associated with ENSO (El Nifio-Southem Oscillation). The TC northward, southward, upward, and downward transports all weaken in E1 Nifios and strengthen in La Nifias. The STC northward and southward transports are out of phase, while the STC northward and downward transports are in phase. Sea-surface water that reaches the middle latitude and is subducted may not completely return to the vopics. The zonal wind anomalies over the central North Pacific, which control Ekman transport, and the east-west slope of the sea level may be major factors causing the TC northward and southward transport interannual variability and the STC northward and southward transports on the interannual time scale. The DTC northward and southward transports decrease during strong E1 Nifios and increase during strong La Nifias. DTC upward and downward transports are not strongly correlated with the Nifio-3 index and may not be completely controlled by ENSO. 展开更多
关键词 North Pacific Ocean meridional overturning circulation interannual variation temporal andspatial variations
下载PDF
The shallow meridional overturning circulation in the South China Sea and the related internal water movement 被引量:1
11
作者 ZHANG Ningning LAN Jian +1 位作者 MA Jie CUI Fengjuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第7期1-7,共7页
The structure of the annual-mean shallow meridional overturning circulation (SMOC) in the South China Sea (SCS) and the related water movement are investigated, using simple ocean data assimilation (SODA) output... The structure of the annual-mean shallow meridional overturning circulation (SMOC) in the South China Sea (SCS) and the related water movement are investigated, using simple ocean data assimilation (SODA) outputs. The distinct clockwise SMOC is present above 400 m in the SCS on the climatologically annual-mean scale, which consists of downwelling in the northern SCS, a southward subsurface branch supplying upwelling at around 10°N and a northward surface flow, with a strength of about 1x 108 ma/s. The formation mechanisms of its branches are studied separately. The zonal component of the annual-mean wind stress is predominantly westward and causes northward Ekman transport above 50 m. The annual-mean Ekman transport across 18°N is about 1.2×106 m^3/s. An annual-mean subduction rate is calculated by estimating the net volume flux entering the thermocline from the mixed layer in a Lagrangian framework. An annual subduction rate of about 0.66×106 ma/s is obtained between 17° and 20°N, of which 87% is due to vertical pumping and 13% is due to lateral induction. The subduction rate implies that the subdution contributes significantly to the downwelling branch. The pathways of traced parcels released at the base of the February mixed layer show that after subduction water moves southward to as far as 1 I^N within the western boundary current before returning northward. The velocity field at the base of mixed layer and a meridional velocity section in winter also confirm that the southward flow in the subsurface layer is mainly by strong western boundary currents. Significant upwelling mainly occurs off the Vietnam coast in the southern SCS. An upper bound for the annual-mean net upwelfing rate between 10° and 15°N is 0.7×108 ma/s, of which a large portion is contributed by summer upwelling, with both the alongshore component of the southwest wind and its offshore increase causing great upwelling. 展开更多
关键词 South China Sea shallow meridional overturning circulation Ekman transport SUBDUCTION UPWELLING
下载PDF
Mechanisms of Atlantic Meridional Overturning Circulation(AMOC)Variability in a Coupled Ocean–Atmosphere GCM 被引量:1
12
作者 Boyin HUANG ZHU Jiang YANG Haijun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期241-251,共11页
The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifi... The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifies a coupled mode between SST and surface heat flux in the North Atlantic at the decadal timescale,as well as a forcing mode of surface heat flux at the interannual timescale.The coupled mode is regulated by AMOC through meridional heat transport.The increase in surface heating in the North Atlantic weakens the AMOC approximately 10 yr later,and the weakened AMOC in turn decreases SST and sea surface salinity.The decreased SST results in an increase in surface heating in the North Atlantic,thus forming a positive feedback loop.Meanwhile,the weakened AMOC weakens northward heat transport and therefore lowers subsurface temperature approximately 19 yr later,which prevents the AMOC from weakening.In the forcing mode,the surface heat flux leads AMOC by approximately 4 yr. 展开更多
关键词 Atlantic meridional Overturning circulation AMOC variability coupled mode and forcing mode
下载PDF
Low-frequency variability of the shallow meridional overturning circulation in the South China Sea 被引量:3
13
作者 YANG Zhitong LUO Yiyong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第3期10-20,共11页
The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900-2010. ... The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900-2010. A dynamical decomposition method is used in which the MOC is decomposed into the Ekman, external mode, and vertical shear components. Results show that all the three dynamical components contribute to the formation of the seasonal and annual mean shallow MOC in the SCS. The shallow MOC in the SCS consists of two cells: a clockwise cell in the south and an anticlockwise cell in the north; the former is controlled by the Ekman flow and the latter is dominated by the external barotropic flow, with the contribution of the vertical shear being to reduce the magnitude of both cells. In addition, the strength of the MOC in the south is found to have a falling trend over the past century, due mainly to a weakening of the Luzon Strait transport(LST) that reduces the transport of the external component. Further analysis suggests that the weakening of the LST is closely related to a weakening of the westerly wind anomalies over the equatorial Pacific, which leads to a southward shift of the North Equatorial Current(NEC) bifurcation and thus a stronger transport of the Kuroshio east of Luzon. 展开更多
关键词 South China Sea meridional overturning circulation Luzon Strait transport North Equatorial Current bifurcation
下载PDF
The seasonal variation of the North Pacific Meridional Overturning Circulation heat transport
14
作者 LIU Hongwei ZHANG Qilong +2 位作者 PANG Chongguang DUAN Yongliang XU Jianping 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第2期423-433,共11页
Based on the 50-year Simple Ocean Data Assimilation (SODA) reanalysis data, we investigated the basic characteristics and seasonal changes of the meridional heat transport carried by the North Pacific Meridional Overt... Based on the 50-year Simple Ocean Data Assimilation (SODA) reanalysis data, we investigated the basic characteristics and seasonal changes of the meridional heat transport carried by the North Pacific Meridional Overturning Circulation. And we also examined the dynamical and thermodynamic mechanisms responsible for these heat transport variability at the seasonal time scale. Among four cells, the tropical cell (TC) is strongest with a northward heat transport (NHT) of (1.75±0.30) PW (1 PW=1.0×10^15 W) and a southward heat transport (SHT) of (-1.69±0.55) PW, the subtropical cell (STC) is second with a NHT of (0.71±0.65) PW and SHT of (-0.63±0.53) PW, the deep tropical cell (DTC) is third with a NHT of (0.18±0.03) PW and SHT of (-0.18±0.11) PW, while the subpolar cell (SPC) is weakest with a NHT of (0.09±0.05) PW and SHT of (-0.07±0.09) PW. These four cells all have diff erent seasonal changes in their NHT and SHT. Of all, the TC has stronger change in its SHT than in its NHT, so do both the DTC and SPC, but the seasonal change in the STC SHT is weaker than that in its NHT. Therefore, their dynamical and thermodynamic mechanisms are diff erent each other. The local zonal wind stress and net surface heat flux are mainly responsible for the seasonal changes in the TC and STC NHTs and SPC SHT, while the local thermocline circulations and sea temperature are primarily responsible for the seasonal changes of the TC, STC and DTC SHTs and SPC NHT. 展开更多
关键词 meridional OVERTURNING circulation heat transport NORTH PACIFIC SEASONAL variation
下载PDF
Effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation:a model study
15
作者 SHU Qi QIAO Fangli +1 位作者 SONG Zhenya XIAO Bin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第8期59-65,共7页
An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first cent... An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first century according to Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled models. The present study found that water flux from rivers to the Arctic Ocean at the end of the century will be 1.4 times that in 1950 according to CMIP5 projection results under Representative Concentration Pathway 8.5. The effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation (AMOC) was investigated using an ocean-ice coupled model. Results obtained from two numerical experiments show that 100, 150 and 200 years after the start of an increase in the Arctic river runoff at a rate of 0.22%/a, the AMOC will weaken by 0.6 (3%), 1.2 (7%) and 1.8 (11%) Sv. AMOC weakening is mainly caused by freshwater transported from increasing Arctic river runoff inhibiting the formation of North Atlantic Deep Water (NADW). As the AMOC weakens, the deep seawater age will become older throughout the Atlantic Basin owing to the increasing of Arctic runoff. 展开更多
关键词 climate change Arctic river runoff Atlantic meridional overturning circulation
下载PDF
DIAGNOSTIC ANALYSIS OF MEAN MERIDIONAL CIRCULATION ANOMALY IN LOW LATITUDES IN RELATION TO ZONAL MEAN SST ANOMALY
16
作者 程亚军 王盘兴 李丽平 《Journal of Tropical Meteorology》 SCIE 2002年第2期158-167,共10页
The mass stream function of zonal mean meridional circulation is calculated in terms of NCEP/NCAR monthly meridional wind speed and vertical velocity, and the climatic and anomalous features of zonal mean SST and meri... The mass stream function of zonal mean meridional circulation is calculated in terms of NCEP/NCAR monthly meridional wind speed and vertical velocity, and the climatic and anomalous features of zonal mean SST and meridional circulation are investigated. Results show that (1) a joint ascending branch of Northern and Southern Hadley circulation is on the side of the summer hemisphere near the equator ,being well consistent with the extremum of[]SST,and a strong descending by the winter-hemispheric side.(2)El Ni駉-related][SSTin low latitudes is an important outer-forcing source for anomaly meridional circulation, which is affected by seasonal variation of basic airflow and[]SST, and interannual and interdecadal changes of []SST. 展开更多
关键词 meridional circulation sea surface temperature anomalous relationship
下载PDF
Change in Spring Meridional Circulation and Its Relation to Summer Typhoon Activities
17
作者 CHEN Dong WANG Hui-Jun LI Guo-Ping 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第3期144-148,共5页
This study documents the decadal changes of the spring meridional circulation (SMC) over 110°E- 165°E and the relationship between the SMC and summer (June-July-August-September) typhoon activity over th... This study documents the decadal changes of the spring meridional circulation (SMC) over 110°E- 165°E and the relationship between the SMC and summer (June-July-August-September) typhoon activity over the Western North Pacific (WNP) during 1948-2010. The authors found that the SMC was changed after 1969. Before its change, the SMC had no clear relation with the summer typhoon number over the WNP (TNWNP), but after the change, it has become positively correlated with the TNWNP, with a correlation coefficient of 0.57 be- tween them (above the 99% confidence level). It was ob- served that after the SMC was changed, the positive tropical sea surface temperature anomaly associated with the SMC was shifted from the Equatorial Eastern Pacific (El Nifio) to the equatorial middle Pacific (El Nifio Mo- doki); at the same time, the Pacific decadal oscillation (PDO) pattern over the North Pacific, which is associated with the SMC, was enhanced. The SMC and the TNWNP are both modulated by the E1 Nifio Modoki after 1969, so the relationship between them becomes significant. 展开更多
关键词 spring meridional circulation summer tynhnon activity Modoki.
下载PDF
A Comparison between Numerical Simulations of Forced Local Hadley (Anti-Hadley) Circulation in East Asian and Indian Monsoon Regions 被引量:15
18
作者 袁卓建 王同美 +2 位作者 贺海晏 罗会邦 郭裕福 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第4期538-554,共17页
Two numerical simulations of forced local Hadley circulation are carried out based on a linear diagnostic equation to provide an insight into the mechanisms of monsoon evolution in different monsoon regions. One simul... Two numerical simulations of forced local Hadley circulation are carried out based on a linear diagnostic equation to provide an insight into the mechanisms of monsoon evolution in different monsoon regions. One simulation is for the zonal mean Hadley circulation over East Asia (from 95°E to 122.5°E), another over India (from 70°E to 85°E). With the NCEP/ NCAR re-analysis data re—processed by Chinese Academy of Science in Beijing, the former simulation displays a dominant anti—Hadley circulation pattern over East Asia at 1200 UTC May 1, 1994. The simulated circulation pattern is consistent well enough with the circulation pattern plotted directly from the data for lack of the radiation information at each level. Although the simulation over India is not as good as that over East Asia, a dominant Hadley circulation pattern is obvious as data show. Further analysis shows that the defective simulation over India is due to the presence of statically unstable condition at some grid points in the lower troposphere. This circumstance slightly violates the hydrodynamic stability criterion required by the elliptic diagnostic equation for the forced circulation. Since the simulations are reliable enough compared with the given data, the linear equation facilitates a systematic assessment of relative importance of each internally forcing process. The assessment shows that among the internal processes, the horizontal temperature advections account obviously for the Hadley (anti—Hadley) circulation over India (East Asia) at 1200 UTC May 1, 1994 in addition to the process associated with the latent heat releasing. The calculation of latent heat energy is a little bit unreliable due to the unclear cloud physics in the convection processes and the less accurate humidity data. These preliminary results are consistent with the results of previous studies which show that the feature of the seasonal warming in the upper troposphere and the corresponding processes are part of key processes closely related to the evolution of the summer monsoon over East Asia and India. Key words Monsoon circulation - Hadley circulation - Forced meridional circulation This work was supported by the “ National key programme of China for developing basic science” G 1998040900 part 1, NSFC 49675264 and NSFC 49875021. 展开更多
关键词 Monsoon circulation Hadley circulation Forced meridional circulation
下载PDF
The influence of explicit tidal forcing in a climate ocean circulation model 被引量:5
19
作者 YU Yi LIU Hailong LAN Jian 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第9期42-50,共9页
The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitu... The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitudes and phases had been simulated fairly well.The responses of mean circulation,temperature and salinity are further investigated in the global sense.When implementing the tidal forcing,wind-driven circulations are reduced,especially those in coastal regions.It is also found that the upper cell transport of the Atlantic meridional overturning circulation(AMOC) reduces significantly,while its deep cell transport is slightly enhanced from 9×106m3/s to 10×106 m3/s.The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing.The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction,mixing and the changes in mean circulation.The largest changes occur in the coastal regions,where the water is cooled and freshened.In the open ocean,the changes are divided into three layers:cooled and freshened on the surface and below 3 000 m,and warmed and salted in the middle in the open ocean.In the upper two layers,the changes are mainly caused by the enhanced mixing,as warm and salty water sinks and cold and fresh water rises;whereas in the deep layer,the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean. 展开更多
关键词 tidal forcing tidal mixing ocean general circulation model wind-driven circulation Atlantic meridional overturning circulation
下载PDF
Vertical Circulation Structure, Interannual Variation Features and Variation Mechanism of Western Pacific Subtropical High 被引量:14
20
作者 何金海 周兵 +1 位作者 温敏 李峰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第4期497-510,共14页
The paper investigates the vertical circulation structure of the western Pacific subtropical high (STH) and its interannual variation features in relation tO East Asian subtropical summer monsoon and external thermal ... The paper investigates the vertical circulation structure of the western Pacific subtropical high (STH) and its interannual variation features in relation tO East Asian subtropical summer monsoon and external thermal forcing by using the high-resolution and good-quality observations from the 1998 South China Sea Summer Monsoon Experiment (SCSMEX), the NCEP 40-year reanalysis data and relevant SST and the STH parameters. It is found that the vertical circulation structures differ greatly in features between quasi-Stationary and transient components of the western Pacific STH. When rainstorms happen in the rainband of East Asian subtropical monsoon on the STH north side, the downdrafts are distinct around the ridge at a related meridian. The sinking at high (low) levels comes from the north (south) side of the STH, thereby revealing that the high is a tie between tropical and extratropical systems. The analyses of this paper suggest that the latent heat release associated with subtropical monsoon precipitation, the offshore SST and East Asian land-sea thermal contrast have a significant effect on the STH interannual anomaly. Our numerical experiment shows that the offshore SSTA-caused sensible heating may excite an anomalous anticyclonic circulation on the west side, which affects the intensity (area) and meridional position of the western Pacific STH. 展开更多
关键词 Western Pacific subtropical high. meridional/zonal circulation Interannual variation Offshore sea surface tomperature
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部