期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Fiber Volume Fraction on Damping Properties of Three-Dimensional and Five-Directional Braided Composites 被引量:1
1
作者 高岩 李嘉禄 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期458-465,共8页
The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental mod... The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions. 展开更多
关键词 damping properties experimental modal analysis three-dimensional and five-directional(3D-5Dir) braided composites free vibration characters fiber volume fraction
下载PDF
Effective Thermal Conductivity for 3D Five-Directional Braided Composites Based on Microstructural Analysis
2
作者 ZHAO Xiao MAO Junkui JIANG Hua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第1期128-138,共11页
A method for predicting effective thermal conductivities(ETCs) of three-dimensional five-directional(3D5D) braided composites is presented. The effective thermal conductivity prediction method contains a digital image... A method for predicting effective thermal conductivities(ETCs) of three-dimensional five-directional(3D5D) braided composites is presented. The effective thermal conductivity prediction method contains a digital image processing technology. Multiple scanning electron microscopy(SEM)images of composites are analyzed to obtain actual microstructural features. These actual microstructural features of 3D5D braided composites are introduced into representative volume element(RVE) modeling. Apart from applying actual microstructural features,compression effects between yarns are considered in the modeling of RVE,making the RVE more realistic. Therefore,the ETC prediction method establishes a representative unit cell model that better reflects the true microstructural characteristics of the 3D5D braided composites. The ETCs are predicted with the finite element method. Then thermal conductivity measurements are carried out for a 3D5D braided composite sample.By comparing the predicted ETC with the measured thermal conductivity, the whole process of the ETC prediction method is proved to be effective and accurate,where a relative error of only 2.9 % is obtained.Furthermore,the effects of microstructural features are investigated,indicating that increasing interior braiding angles and fiber fill factor can lead to higher transverse ETCs. Longitudinal ETCs decrease with increasing interior braiding angles,but increase with increasing fiber fill factor. Finally,the influence of variations of microstructure parameters observed in digital image processing are investigated. To explore the influence of variations in microstructural features on variations in predicted ETCs,the actual probability distributions of microstructural features obtained from the 3D5D braided composite sample are introduced into the ETC investigation. The results show that,compared with the interior braiding angle,variations in the fiber fill factor exhibit more significant effects on variations in ETCs. 展开更多
关键词 EFFECTIVE thermal CONDUCTIVITY digital IMAGE processing VARIATION 3D five-directional braided composites
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部