期刊文献+
共找到5,104篇文章
< 1 2 250 >
每页显示 20 50 100
Three-dimensional structural models,evolution and petroleum geological significances of transtensional faults in the Ziyang area,central Sichuan Basin,SW China
1
作者 TIAN Fanglei GUO Tonglou +6 位作者 HE Dengfa GU Zhanyu MENG Xianwu WANG Renfu WANG Ying ZHANG Weikang LU Guo 《Petroleum Exploration and Development》 SCIE 2024年第3期604-620,共17页
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,... With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration. 展开更多
关键词 transtensional(strike-slip)fault three-dimensional structural model structural evolution petroleum geological significance Ziyang area Sichuan Basin
下载PDF
Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions
2
作者 Jiaqi Wu Li Zhuo +4 位作者 Jianliang Pei Yao Li Hongqiang Xie Jiaming Wu Huaizhong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期621-645,共25页
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ... The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses. 展开更多
关键词 Underground engineering modularized and parametric modeling finite element method complex geological structure cloud modeling
下载PDF
Component-based Topological Data Model for Three-dimensional Geology Modeling 被引量:3
3
作者 HOUEnke WULixin WUYuhua JUTianyi 《Geo-Spatial Information Science》 2005年第2期122-127,共6页
On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological... On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological objects are divided into four object classes: point, line, area and volume. The volume class is further divided into four subclasses: the composite volume, the complex volume, the simple volume and the component. Twelve kinds of topological relations and the related data structures are designed for the geological objects. 展开更多
关键词 geology modeling 3D data models 3DGIS
下载PDF
A DESIGN OF THREE-DIMENSIONAL SPATIAL DATA MODEL AND ITS DATA STRUCTURE IN GEOLOGICAL EXPLORATION ENGINEERING
4
作者 Cheng Penggen Gong Jianya +1 位作者 Wang Yandong Sui Haigang 《Geo-Spatial Information Science》 1999年第1期78-85,共8页
The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there ar... The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there are no perfect data structures that can describe all spatial entities. Every data structure has its own advantages and disadvantages. It is difficult to design a single data structure to meet different needs. The important subject in the3-D data models is developing a data model that has integrated vector and raster data structures. A special 3-D spatial data model based on distributing features of spatial entities should be designed. We took the geological exploration engineering as the research background and designed an integrated data model whose data structures integrats vector and raster data byadopting object-oriented technique. Research achievements are presented in this paper. 展开更多
关键词 geological EXPLORATION ENGINEERING GEOGRAPHIC information system three DIMENSIONAL DATA model DATA structure
下载PDF
Three-dimensional geological modelling and direction of hydrothermal alteration of Horne deposit, Blake River Group, Quebec, Canada
5
作者 TIAN Liya YU Yunliang XU Haibo 《Global Geology》 2021年第1期15-22,共8页
The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.I... The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.It is hard to reflect the spatial structure and characteristics of Horne orebody directly.In this paper,GIS was used to digitize the mining plan-view maps at different depths,stope maps,the boundary of the massive sulfide in drilling trajectories as well as the grade data of Au and Cu of Horne deposit.Meanwhile,the authors established the grade attribute database.Subsequently the three-dimensional(3D)geological model and grade attribute model of Horne orebody were established by Geological Object Computer Aided Design(GOCAD).Positions of two vents and directions of hydrothermal alteration in Horne deposit were inferred based on the property of the major fault,characteristics of hydrothermal alteration,the enrichment morphology and spatial distribution of high-grade Cu in the Cu attribute model. 展开更多
关键词 Horne deposit massive sulfide three-dimensional geological modeling hydrothermal alteration
下载PDF
GeoNER:Geological Named Entity Recognition with Enriched Domain Pre-Training Model and Adversarial Training
6
作者 MA Kai HU Xinxin +4 位作者 TIAN Miao TAN Yongjian ZHENG Shuai TAO Liufeng QIU Qinjun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1404-1417,共14页
As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate unders... As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information. 展开更多
关键词 geological named entity recognition geological report adversarial training confrontation training global pointer pre-training model
下载PDF
3D geological modeling for mineral resource assessment of the Tongshan Cu deposit,Heilongjiang Province,China 被引量:28
7
作者 Gongwen Wang Lei Huang 《Geoscience Frontiers》 SCIE CAS 2012年第4期483-491,共9页
Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D ... Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1) on basis of the concept of magmatic-hydrothermal Cu polymetallic mineraliza- tion and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data) was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2) on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3) combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW) method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%); (4) comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal processes among the ore bodies, alteration rock, metallo- genic stratum, intrusive rock, and the Tongshan Fault. This study provides important technical support and a scientific basis for assessment of the Tongshan Cu deposit and surrounding exploration and mineral resources. 展开更多
关键词 three-dimensional geological modeling (3DGM) Virtual borehole Virtual section BP network INTERPOLATION Tongshan Cu deposit
下载PDF
3-D Geological Modeling-Concept,Methods and Key Techniques 被引量:17
8
作者 PAN Mao LI Zhaoliang +2 位作者 GAO Zhongbo YANG Yang WU Gengyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第4期1031-1036,共6页
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa... 3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies. 展开更多
关键词 3-D geological modeling geological interpretation methods of modeling quality of models
下载PDF
Reservoir Stochastic Modeling Constrained by Quantitative Geological Conceptual Patterns 被引量:4
9
作者 Wu Shenghe Zhang Yiwei Jan Einar Ringas 《Petroleum Science》 SCIE CAS CSCD 2006年第1期27-33,共7页
This paper discusses the principles of geologic constraints on reservoir stochastic modeling. By using the system science theory, two kinds of uncertainties, including random uncertainty and fuzzy uncertainty, are rec... This paper discusses the principles of geologic constraints on reservoir stochastic modeling. By using the system science theory, two kinds of uncertainties, including random uncertainty and fuzzy uncertainty, are recognized. In order to improve the precision of stochastic modeling and reduce the uncertainty in realization, the fuzzy uncertainty should be stressed, and the "geological genesis-controlled modeling" is conducted under the guidance of a quantitative geological pattern. An example of the Pingqiao horizontal-well division of the Ansai Oilfield in the Ordos Basin is taken to expound the method of stochastic modeling. 展开更多
关键词 RESERVOIR stochastic modeling geological constraints sedimentary facies
下载PDF
Implicit modeling of complex orebody with constraints of geological rules 被引量:14
10
作者 De-yun ZHONG Li-guan WANG +1 位作者 Lin BI Ming-tao JIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2392-2399,共8页
To dynamically update the shape of orebody according to the knowledge of a structural geologist’s insight,an approach of orebody implicit modeling from raw drillhole data using the generalized radial basis function i... To dynamically update the shape of orebody according to the knowledge of a structural geologist’s insight,an approach of orebody implicit modeling from raw drillhole data using the generalized radial basis function interpolant was presented.A variety of constraint rules,including geology trend line,geology constraint line,geology trend surface,geology constraint surface and anisotropy,which can be converted into interpolation constraints,were developed to dynamically control the geology trends.Combined with the interactive tools of constraint rules,this method can avoid the shortcomings of the explicit modeling method based on the contour stitching,such as poor model quality,and is difficult to update dynamically,and simplify the modeling process of orebody.The results of numerical experiments show that the 3D ore body model can be reconstructed quickly,accurately and dynamically by the implicit modeling method. 展开更多
关键词 three-dimensional geomodeling implicit modeling radial basis function structural anisotropy geological rules
下载PDF
Alternative 3D Modeling Approaches Based on Complex Multi-Source Geological Data Interpretation 被引量:5
11
作者 李明超 韩彦青 +1 位作者 缪正建 高伟 《Transactions of Tianjin University》 EI CAS 2014年第1期7-14,共8页
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana... Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands. 展开更多
关键词 multi-source data geological data interpretation interpolation-approximation fitting 3D geological sur-face modeling
下载PDF
An Approach to Computer Modeling of Geological Faults in 3D and an Application 被引量:10
12
作者 ZHU Liang-feng HE Zheng PAN Xin WU Xin-cai 《Journal of China University of Mining and Technology》 2006年第4期461-465,共5页
3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geo... 3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities contain- ing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geo- logical exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of model- ing approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling tech- nique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound compre- hension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences. 展开更多
关键词 3D geological modeling geological faults STRATUM fault data visualization Beijing Olympic Green District
下载PDF
A review of CO2 storage in geological formations emphasizing modeling,monitoring and capacity estimation approaches 被引量:14
13
作者 Temitope Ajayi Jorge Salgado Gomes Achinta Bera 《Petroleum Science》 SCIE CAS CSCD 2019年第5期1028-1063,共36页
The merits of CO2 capture and storage to the environmental stability of our world should not be underestimated as emissions of greenhouse gases cause serious problems.It represents the only technology that might rid o... The merits of CO2 capture and storage to the environmental stability of our world should not be underestimated as emissions of greenhouse gases cause serious problems.It represents the only technology that might rid our atmosphere of the main anthropogenic gas while allowing for the continuous use of the fossil fuels which still power today’s world.Underground storage of CO2 involves the injection of CO2 into suitable geological formations and the monitoring of the injected plume over time,to ensure containment.Over the last two or three decades,attention has been paid to technology developments of carbon capture and sequestration.Therefore,it is high time to look at the research done so far.In this regard,a high-level review article is required to provide an overview of the status of carbon capture and sequestration research.This article presents a review of CO2 storage technologies which includes a background of essential concepts in storage,the physical processes involved,modeling procedures and simulators used,capacity estimation,measuring monitoring and verification techniques,risks and challenges involved and field-/pilot-scale projects.It is expected that the present review paper will help the researchers to gain a quick knowledge of CO2 sequestration for future research in this field. 展开更多
关键词 CO2 storage geological formation modeling for CO2 storage Mechanism of CO2 storage CO2 storage projects
下载PDF
3D Geological Modeling with Multi-source Data Integration in Polymetallic Region:A Case Study of Luanchuan,Henan Province,China 被引量:1
14
作者 Gongwen Wang~(1,2),Shouting Zhang~(1,2),Changhai Yan~3,Yaowu Song~3,Limei Wang~1 1.School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083,China. 2.State Key laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China 3.Henan Institute of Geological Survey,Zhengzhou 450007,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期166-167,共2页
The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luan... The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China. 展开更多
关键词 3D geological modeling MULTI-SOURCE data MINERAL exploration METALLOGENIC model virtual geological section Luanchuan POLYMETALLIC REGION
下载PDF
Geomechanical modeling of CO2 geological storage:A review 被引量:2
15
作者 Pengzhi Pan Zhenhua Wu +1 位作者 Xiating Feng Fei Yan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期936-947,共12页
This paper focuses on the progress in geomechanical modeling associated with carbon dioxide(CO2)geological storage.The detailed review of some geomechanical aspects,including numerical methods,stress analysis,ground d... This paper focuses on the progress in geomechanical modeling associated with carbon dioxide(CO2)geological storage.The detailed review of some geomechanical aspects,including numerical methods,stress analysis,ground deformation,fault reactivation,induced seismicity and crack propagation,is presented.It is indicated that although all the processes involved are not fully understood,integration of all available data,such as ground survey,geological conditions,microseismicity and ground level deformation,has led to many new insights into the rock mechanical response to CO2injection.The review also shows that in geomechanical modeling,continuum modeling methods are predominant compared with discontinuum methods.It is recommended to develop continuum-discontinuum numerical methods since they are more convenient for geomechanical modeling of CO2geological storage,especially for fracture propagation simulation.The Mohr-Coulomb criterion is widely used in prediction of rock mass mechanical behavior.It would be better to use a criterion considering the effect of the intermediate principal stress on rock mechanical behavior,especially for the stability analysis of deeply seated rock engineering.Some challenges related to geomechanical modeling of CO2geological storage are also discussed. 展开更多
关键词 Geomechanical modeling Carbon dioxide(CO_2) geological storage Continuum numerical method Continuum-discontinuum numerical method Fault representation Fault reactivation Fracture propagation Induced seismicity
下载PDF
Construction of carbonate reservoir knowledge base and its application in fracture-cavity reservoir geological modeling 被引量:4
16
作者 HE Zhiliang SUN Jianfang +3 位作者 GUO Panhong WEI Hehua LYU Xinrui HAN Kelong 《Petroleum Exploration and Development》 CSCD 2021年第4期824-834,共11页
To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves... To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves high-quality analysis,evaluation,description and geological modeling of reservoirs.The knowledge framework is divided into three categories:technical service standard,technical research method and professional knowledge and cases related to geological objects.In order to build a knowledge base,first of all,it is necessary to form a knowledge classification system and knowledge description standards;secondly,to sort out theoretical understandings and various technical methods for different geologic objects and work out a technical service standard package according to the technical standard;thirdly,to collect typical outcrop and reservoir cases,constantly expand the content of the knowledge base through systematic extraction,sorting and saving,and construct professional knowledge about geological objects.Through the use of encyclopedia based collaborative editing architecture,knowledge construction and sharing can be realized.Geological objects and related attribute parameters can be automatically extracted by using natural language processing(NLP)technology,and outcrop data can be collected by using modern fine measurement technology,to enhance the efficiency of knowledge acquisition,extraction and sorting.In this paper,the geological modeling of fracture-cavity reservoir in the Tarim Basin is taken as an example to illustrate the construction of knowledge base of carbonate reservoir and its application in geological modeling of fracture-cavity carbonate reservoir. 展开更多
关键词 knowledge management reservoir knowledge base fracture-cavity reservoir geological modeling CARBONATES paleo-underground river system Tahe oilfield Tarim Basin
下载PDF
Risk Assessment of Coal Mine Water Hazard Based on Three-Dimensional Model of Geology and Underground Space 被引量:1
17
作者 Kai Zhang~1,Ming Huang~1,Bin Tang~2,Fan Cui~1 1.Laboratory of Coal Resources and Mine Safety,China University of Mining and Technology,Beijing 100083,China. 2.China Water Investment Co.Ltd,Beijing 100053,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期279-279,共1页
Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coa... Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of 展开更多
关键词 DISASTER risk assessment three-dimensionAL model of geologY and UNDERGROUND space emergency RESCUE
下载PDF
3D modeling of geological anomalies based on segmentation of multiattribute fusion 被引量:1
18
作者 Liu Zhi-Ning Song Cheng-Yun +3 位作者 Li Zhi-Yong Cai Han-Peng Yao Xing-Miao Hu Guang-Min 《Applied Geophysics》 SCIE CSCD 2016年第3期519-528,581,共11页
3D modeling of geological bodies based on 3D seismic data is used to define the shape and volume of the bodies, which then can be directly applied to reservoir prediction, reserve estimation, and exploration. However,... 3D modeling of geological bodies based on 3D seismic data is used to define the shape and volume of the bodies, which then can be directly applied to reservoir prediction, reserve estimation, and exploration. However, multiattributes are not effectively used in 3D modeling. To solve this problem, we propose a novel method for building of 3D model of geological anomalies based on the segmentation of multiattribute fusion. First, we divide the seismic attributes into edge- and region-based seismic attributes. Then, the segmentation model incorporating the edge- and region-based models is constructed within the levelset- based framework. Finally, the marching cubes algorithm is adopted to extract the zero level set based on the segmentation results and build the 3D model of the geological anomaly. Combining the edge-and region-based attributes to build the segmentation model, we satisfy the independence requirement and avoid the problem of insufficient data of single seismic attribute in capturing the boundaries of geological anomalies. We apply the proposed method to seismic data from the Sichuan Basin in southwestern China and obtain 3D models of caves and channels. Compared with 3D models obtained based on single seismic attributes, the results are better agreement with reality. 展开更多
关键词 geological anomaly multiattributes FUSION SEGMENTATION 3D modeling
下载PDF
Research on dynamic updating of three dimensional geological modeling based on the OO-Solid model 被引量:1
19
作者 侯恩科 邓念东 +1 位作者 张志华 赵洲 《Journal of Coal Science & Engineering(China)》 2008年第3期420-424,共5页
The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynam... The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynamic updating of database.Firstly, arming at the deficiency of OO-Solid model in the aspect of dynamic updating,modeling primitives of OO-Solid model were modified.And then the algorithms of dynamic updating of 3D geological model with the node data,line data or surface data change were dis- cussed.The core algorithms was done by establishing space index,following the way of facing the object from bottom to top,namely the dynamic updating from the node to arc, and then to polygon,then to the face of the component and finally to the geological object. The research has important theoretical and practical values in the field of three dimen- sional geological modeling and is significant in the field of mineral resources. 展开更多
关键词 digital mine three dimensional geological modeling OO-Solid model dynamic updating
下载PDF
Integrating artificial neural networks and geostatistics for optimum 3D geological block modeling in mineral reserve estimation:A case study 被引量:2
20
作者 Jalloh Abu Bakarr Kyuro Sasaki +1 位作者 Jalloh Yaguba Barrie Abubakarr Karim 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期581-585,共5页
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr... In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design. 展开更多
关键词 Artificial Neural Network model withGeostatistics (ANNMG)3D geological block modeling Mine designKriging
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部