This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudin...A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudinal direction, and the depth direction, respectively. Two sets of 3D PEs for horizontally homogenous media are derived by rewriting the 3D elastic motion equations and simultaneously choosing proper dependent variables. The numerical scheme is for now restricted to the y-independent bathymetry. Accuracy of the numerical scheme is validated, and its azimuthal limitation is analyzed. In addition, effects of horizontal refraction in a wedge-shaped waveguide and another waveguide with a polyline bottom are illustrated. Great efforts should be made in future to provide this model with the ability to handle arbitrarily irregular fluid-elastic interfaces.展开更多
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc...This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.展开更多
A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and roug...A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and rough surface, is presented and discussed. A superior high-order PE version is used to improve the accuracy at wider paraxial angles, and along with the alternating direction implicit (ADI) differential technique, the computational efficiency is further improved. The formula of bistatic normalized radar cross section is derived by definition and near-far field transformation. Numerical examples are given to show the validity and accuracy of the proposed approach, in which the results are compared with those of Kirchhoff approximation (KA) and moment of method (MoM). Furthermore, the bistatic scattering properties of composite model in which the 3-D PEC targets on or above the two-dimensional Gaussian rough surfaces under the tapered wave incidence are analyzed.展开更多
In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gam...In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)).展开更多
In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate pa...In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.展开更多
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(...In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.展开更多
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△...This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.展开更多
To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem...To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of ortho...Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of orthogonal expansions, is applied to solving parabolic stability equations. It is shown that results of great accuracy are effectively obtained.The availability of using Chebyshev approximations in parabolic stability equations is confirmed.展开更多
An optimization theoretic approach of coefficients in semilinear parabolic equation is presented. It is based on convex analysis techniques. General theorems on existence are proved in L1 setting. A necessary conditio...An optimization theoretic approach of coefficients in semilinear parabolic equation is presented. It is based on convex analysis techniques. General theorems on existence are proved in L1 setting. A necessary condition is given for the solutions of the parameter estimatioll problem.展开更多
The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze...The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide(Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer(ABL) both in acoustic and seismo-acoustic sound propagation modeling.展开更多
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ...A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.展开更多
In this paper, the Cauchy problem of the degenerate parabolic equationsis studied for some cases, and the explicit Holder estimates of the solution u with respectto x is given.
Let G =(V, E) be a locally finite connected weighted graph, and ? be the usual graph Laplacian. In this article, we study blow-up problems for the nonlinear parabolic equation ut = ?u + f(u) on G. The blow-up p...Let G =(V, E) be a locally finite connected weighted graph, and ? be the usual graph Laplacian. In this article, we study blow-up problems for the nonlinear parabolic equation ut = ?u + f(u) on G. The blow-up phenomenons for ut = ?u + f(u) are discussed in terms of two cases:(i) an initial condition is given;(ii) a Dirichlet boundary condition is given. We prove that if f satisfies appropriate conditions, then the corresponding solutions will blow up in a finite time.展开更多
The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They a...The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They apply the method of parabolic regularization and Galerkin's method to prove the existence of solutions to the mentioned problem and then prove the uniqueness of the weak solution by arguing by contradiction. The authors prove that the solution approaches 0 in L^2 (Ω) norm as t →∞.展开更多
In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equatio...In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equations, establish a reduced-order MFE formulation with lower dimensions and sufficiently high accuracy, and provide the error estimates between the reduced-order POD MFE solutions and the classical MFE solutions and the implementation of algorithm for solving reduced-order MFE formulation. Some numerical examples illustrate the fact that the results of numerical computation are consis- tent with theoretical conclusions. Moreover, it is shown that the new reduced-order MFE formulation based on POD method is feasible and efficient for solving MFE formulation for parabolic equations.展开更多
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.11234002 and 11704337)the National Key Research Program of China(Grant No.2016YFC1400100)
文摘A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudinal direction, and the depth direction, respectively. Two sets of 3D PEs for horizontally homogenous media are derived by rewriting the 3D elastic motion equations and simultaneously choosing proper dependent variables. The numerical scheme is for now restricted to the y-independent bathymetry. Accuracy of the numerical scheme is validated, and its azimuthal limitation is analyzed. In addition, effects of horizontal refraction in a wedge-shaped waveguide and another waveguide with a polyline bottom are illustrated. Great efforts should be made in future to provide this model with the ability to handle arbitrarily irregular fluid-elastic interfaces.
文摘This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.61771407)
文摘A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and rough surface, is presented and discussed. A superior high-order PE version is used to improve the accuracy at wider paraxial angles, and along with the alternating direction implicit (ADI) differential technique, the computational efficiency is further improved. The formula of bistatic normalized radar cross section is derived by definition and near-far field transformation. Numerical examples are given to show the validity and accuracy of the proposed approach, in which the results are compared with those of Kirchhoff approximation (KA) and moment of method (MoM). Furthermore, the bistatic scattering properties of composite model in which the 3-D PEC targets on or above the two-dimensional Gaussian rough surfaces under the tapered wave incidence are analyzed.
文摘In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)).
文摘In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.
文摘In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.
文摘This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.
文摘To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
文摘Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of orthogonal expansions, is applied to solving parabolic stability equations. It is shown that results of great accuracy are effectively obtained.The availability of using Chebyshev approximations in parabolic stability equations is confirmed.
基金the post-doctoral funds of China and funds of State Educational Commission of China for returned scholars from abroad
文摘An optimization theoretic approach of coefficients in semilinear parabolic equation is presented. It is based on convex analysis techniques. General theorems on existence are proved in L1 setting. A necessary condition is given for the solutions of the parameter estimatioll problem.
基金supported by the Foundation of State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences(No.SKLA201303)the National Natural Science Foundation of China(Nos.11104044,11234002,and 11474073)
文摘The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide(Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer(ABL) both in acoustic and seismo-acoustic sound propagation modeling.
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
基金Project supported by the National Natural Science Foundation of China(Nos.10971203,11271340,and 11101381)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.
文摘In this paper, the Cauchy problem of the degenerate parabolic equationsis studied for some cases, and the explicit Holder estimates of the solution u with respectto x is given.
基金supported by the National Science Foundation of China(11671401)supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(17XNH106)
文摘Let G =(V, E) be a locally finite connected weighted graph, and ? be the usual graph Laplacian. In this article, we study blow-up problems for the nonlinear parabolic equation ut = ?u + f(u) on G. The blow-up phenomenons for ut = ?u + f(u) are discussed in terms of two cases:(i) an initial condition is given;(ii) a Dirichlet boundary condition is given. We prove that if f satisfies appropriate conditions, then the corresponding solutions will blow up in a finite time.
基金Supported by NSFC (10771085)Graduate Innovation Fund of Jilin University(20111034)the 985 program of Jilin University
文摘The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They apply the method of parabolic regularization and Galerkin's method to prove the existence of solutions to the mentioned problem and then prove the uniqueness of the weak solution by arguing by contradiction. The authors prove that the solution approaches 0 in L^2 (Ω) norm as t →∞.
基金supported by the National Science Foundation of China(11271127 and 11061009)Science Research Program of Guizhou(GJ[2011]2367)the Co-Construction Project of Beijing Municipal Commission of Education
文摘In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equations, establish a reduced-order MFE formulation with lower dimensions and sufficiently high accuracy, and provide the error estimates between the reduced-order POD MFE solutions and the classical MFE solutions and the implementation of algorithm for solving reduced-order MFE formulation. Some numerical examples illustrate the fact that the results of numerical computation are consis- tent with theoretical conclusions. Moreover, it is shown that the new reduced-order MFE formulation based on POD method is feasible and efficient for solving MFE formulation for parabolic equations.