Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgica...Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgical simulation.However,this 3D echocardiogram involves a trade-off difficulty between accu-racy and efficient computation in clinical diagnosis.This paper presents a novel Flip Directional 3D Volume Reconstruction(FD-3DVR)method for the recon-struction of echocardiogram images.The proposed method consists of two main steps:multiplanar volumetric imaging and 3D volume reconstruction.In the crea-tion of multiplanar volumetric imaging,two-dimensional(2D)image pixels are mapped into voxels of the volumetric grid.As the obtained slices are discontin-uous,there are some missing voxels in the volume data.To restore the structural and textural information of 3D ultrasound volume,the proposed method creates a volume pyramid in parallel with theflip directional texture pyramid.Initially,the nearest neighbors of missing voxels in the multiplanar volumetric imaging are identified by 3D ANN(Approximate Nearest Neighbor)patch matching method.Furthermore,aflip directional texture pyramid is proposed and aggregated with distance in patch matching tofind out the most similar neighbors.In the recon-struction step,structural and textural information obtained from differentflip angle directions can reconstruct 3D volume well with the desired accuracy.Com-pared with existing 3D reconstruction methods,the proposed Flip Directional 3D Volume Reconstruction(FD-3DVR)method provides superior performance for the mean peak signal-to-noise ratio(40.538 for the proposed method I and 39.626 for the proposed method II).Experimental results performed on the cardi-ac datasets demonstrate the efficiency of the proposed method for the reconstruc-tion of echocardiogram images.展开更多
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based...The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.展开更多
<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and ...<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and Methods:</strong> The anatomical subject was a 33-year-old Korean man who died of leukemia. He was 164 cm tall and weighed 55 kg. This man donated his body to science. Her body was frozen and cut into several anatomical sections after an MRI and CT scan. These anatomical sections were made using a special saw called a 0.2 mm thick cryomacrotome. Thus 8100 cuts were obtained. Only the sections numbered 940 to 1200 were used for our study. A segmentation by manual contouring of the different parts of the typical cervical vertebra was made using the software Winsurf version 3.5 on a laptop PC running Windows 7 equipped with a Ram of 8 gigas. <strong>Results:</strong> Our 3D vector model of the typical cervical vertebra is easily manipulated using the Acrobat 3DPDF interface. Each part of the vertebra accessible in a menu can be displayed, hidden or made transparent, and 3D labels are available as well as educational menus for learning anatomy. <strong>Conclusion: </strong>This original work constitutes a remarkable educational tool for the anatomical study of the typical cervical vertebra and can also be used as a 3D atlas for simulation purposes for training in therapeutic gestures.展开更多
Background Three-dimensional(3D)building models with unambiguous roof plane geometry parameters,roof structure units,and linked topology provide essential data for many applications related to human activities in urba...Background Three-dimensional(3D)building models with unambiguous roof plane geometry parameters,roof structure units,and linked topology provide essential data for many applications related to human activities in urban environments.The task of 3D reconstruction from point clouds is still in the development phase,especially the recognition and interpretation of roof topological structures.Methods This study proposes a novel visual perception-based approach to automatically decompose and reconstruct building point clouds into meaningful and simple parametric structures,while the associated mutual relationships between the roof plane geometry and roof structure units are expressed by a hierarchical topology tree.First,a roof plane extraction is performed by a multi-label graph cut energy optimization framework and a roof structure graph(RSG)model is then constructed to describe the roof topological geometry with common adjacency,symmetry,and convexity rules.Moreover,a progressive roof decomposition and refinement are performed,generating a hierarchical representation of the 3D roof structure models.Finally,a visual plane fitted residual or area constraint process is adopted to generate the RSG model with different levels of details.Results Two airborne laser scanning datasets with different point densities and roof styles were tested,and the performance evaluation metrics were obtained by International Society for Photogrammetry and Remote Sensing,achieving a correctness and accuracy of 97.7%and 0.29m,respectively.Conclusions The standardized assessment results demonstrate the effectiveness and robustness of the proposed approach,showing its ability to generate a variety of structural models,even with missing data.展开更多
The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteri...The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteristics reconstruction technology was brought forward to improve in these aspects,which is defined to directly reconstruct the characteristics of the projection for the best requirements not the overall image quality.The two-dimension(2D)and three-dimension(3D)CT characteristics reconstruction algorithm were firstly introduced,then by detailed analysis,experimental results and comparsion of parameters calculated,its advantages in keeping better high-frequency feature,better noise immunity,short time-consuming and easier design are verified.展开更多
The three-dimensional(3D)pore structures and permeability of shale are critical for forecasting gas production capacity and guiding pressure differential control in practical reservoir extraction.However,few investiga...The three-dimensional(3D)pore structures and permeability of shale are critical for forecasting gas production capacity and guiding pressure differential control in practical reservoir extraction.However,few investigations have analyzed the effects of microscopic organic matter(OM)morphology and 3D pore nanostructures on the stress sensitivity,which are precisely the most unique and controlling factors of reservoir quality in shales.In this study,ultra-high nanoscale-resolution imaging experiments,i.e.focused ion beam-scanning electron microscopy(FIB-SEMs),were conducted on two organic-rich shale samples from Longmaxi and Wufeng Formations in northern Guizhou Depression,China.Pore morphology,porosity of 3D pore nanostructures,pore size distribution,and connectivity of the six selected regions of interest(including clump-shaped OMs,interstitial OMs,framboidal pyrite,and microfractures)were qualitatively and quantitatively characterized.Pulse decay permeability(PDP)measurement was used to investigate the variation patterns of stress-dependent permeability and stress sensitivity of shales under different confining pressures and pore pressures,and the results were then used to calculate the Biot coefficients for the two shale formations.The results showed that the samples have high OM porosity and 85%of the OM pores have the radius of less than 40 nm.The OM morphology and pore structure characteristics of the Longmaxi and Wufeng Formations were distinctly different.In particular,the OM in the Wufeng Formation samples developed some OM pores with radius larger than500 nm,which significantly improved the connectivity.The macroscopic permeability strongly depends on the permeability of OM pores.The stress sensitivity of permeability of Wufeng Formation was significantly lower than that of Longmaxi Formation,due to the differences in OM morphology and pore structures.The Biot coefficients of 0.729 and 0.697 were obtained for the Longmaxi and Wufeng Formations,respectively.展开更多
Repetitive structures of a building share features in terms of geometries and appearance and,therefore,the 3D information for these structures can be transferred from one specification to another for the purpose of 3D...Repetitive structures of a building share features in terms of geometries and appearance and,therefore,the 3D information for these structures can be transferred from one specification to another for the purpose of 3D modeling and reconstruction once they are identified as repetitive structures.In this paper,a novel approach is proposed for the detection of the repetitive structures specified by the polygons of a building’s footprints.Instead of directly operating on the polygon in 2D space,the polygon is converted into a bend angle function representation in 1D space,whereby an extrusion is represented as a closed polygon intersected by the x-axis and located above it,while an intrusion is represented as a closed polygon below the x-axis.In this way,a polygon of a footprint is decomposed into a number of extrusions and intrusions which can in turn be processed.The task of detecting any repetitive structures specified in a building’s footprints then becomes the task of clustering the intersected polygons in the bend angle function space.The extrusions/intrusions which can be placed in the same clusters can be regarded as repetitive structures.Experiments show that this proposed approach can detect repetitive structures with different sizes,orientations and complexities.展开更多
The rise of artificial intelligence generated content(AIGC)has been remarkable in the language and image fields,but artificial intelligence(AI)generated three-dimensional(3D)models are still under-explored due to thei...The rise of artificial intelligence generated content(AIGC)has been remarkable in the language and image fields,but artificial intelligence(AI)generated three-dimensional(3D)models are still under-explored due to their complex nature and lack of training data.The conventional approach of creating 3D content through computer-aided design(CAD)is labor-intensive and requires expertise,making it challenging for novice users.To address this issue,we propose a sketch-based 3D modeling approach,Deep3DSketch-im,which uses a single freehand sketch for modeling.This is a challenging task due to the sparsity and ambiguity.Deep3DSketch-im uses a novel data representation called the signed distance field(SDF)to improve the sketch-to-3D model process by incorporating an implicit continuous field instead of voxel or points,and a specially designed neural network that can capture point and local features.Extensive experiments are conducted to demonstrate the effectiveness of the approach,achieving state-of-the-art(SOTA)performance on both synthetic and real datasets.Additionally,users show more satisfaction with results generated by Deep3DSketch-im,as reported in a user study.We believe that Deep3DSketch-im has the potential to revolutionize the process of 3D modeling by providing an intuitive and easy-to-use solution for novice users.展开更多
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis...Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches.展开更多
Heterogeneous catalysts are the most important catalysts in industrial reactions. Nanocatalysts, with size ranging from hundreds of nanometers to the atomic scale, possess activities that are closely connected to thei...Heterogeneous catalysts are the most important catalysts in industrial reactions. Nanocatalysts, with size ranging from hundreds of nanometers to the atomic scale, possess activities that are closely connected to their structural characteristics such as particle size, surface morphology, and three-dimensional topography. Recently, the development of advanced analytical transmission electron microscopy(TEM) techniques, especially quantitative high-angle annular darkfield(HAADF) imaging and high-energy resolution spectroscopy analysis in scanning transmission electron microscopy(STEM) at the atomic scale, strengthens the power of(S)TEM in analyzing the structural/chemical information of heterogeneous catalysts. Three-dimensional reconstruction from two-dimensional projected images and the real-time recording of structural evolution during catalytic reactions using in-situ(S)TEM methods further broaden the scope of(S)TEM observation. The atomic-scale structural information obtained from high-resolution(S)TEM has proven to be of significance for better understanding and designing of new catalysts with enhanced performance.展开更多
Recently, orthogonal moments have become efficient tools for two-dimensional and three-dimensional(2D and 3D) image not only in pattern recognition, image vision, but also in image processing and applications engine...Recently, orthogonal moments have become efficient tools for two-dimensional and three-dimensional(2D and 3D) image not only in pattern recognition, image vision, but also in image processing and applications engineering. Yet, there is still a major difficulty in 3D rotation invariants. In this paper, we propose new sets of invariants for 2D and 3D rotation, scaling and translation based on orthogonal radial Hahn moments. We also present theoretical mathematics to derive them. Thus, this paper introduces in the first case new 2D radial Hahn moments based on polar representation of an object by one-dimensional orthogonal discrete Hahn polynomials, and a circular function. In the second case, we present new 3D radial Hahn moments using a spherical representation of volumetric image by one-dimensional orthogonal discrete Hahn polynomials and a spherical function. Further 2D and 3D invariants are derived from the proposed 2D and 3D radial Hahn moments respectively, which appear as the third case. In order to test the proposed approach, we have resolved three issues: the image reconstruction, the invariance of rotation, scaling and translation, and the pattern recognition. The result of experiments show that the Hahn moments have done better than the Krawtchouk moments, with and without noise. Simultaneously, the mentioned reconstruction converges quickly to the original image using 2D and 3D radial Hahn moments, and the test images are clearly recognized from a set of images that are available in COIL-20 database for 2D image, and Princeton shape benchmark(PSB) database for 3D image.展开更多
Computer-aided hip surgery planning and implant design applications require accurate segmentation of femoral head and proximal acetabulum. An accurate outer surface extraction of femoral head using marching cubes algo...Computer-aided hip surgery planning and implant design applications require accurate segmentation of femoral head and proximal acetabulum. An accurate outer surface extraction of femoral head using marching cubes algorithm remains challenging due to deformed shapes and extremely narrow inter-bone regions. In this paper, we present an automatic and fast approach for segmentation of femoral head and proximal acetabulum which leads to accurate and compact representation of femoral head using marching cubes algorithm. At first, valley-emphasized images are constructed from original images so that valleys stand out in high relief. Otsu's multiple thresholding technique is applied to seperate the images into bone and non-bone classes. Region growing method and threedimensional(3D) morphological operations are performed to fill holes in the bone. In the reclassification process,the bone regions are further segmented, and the boundaries of the bone regions are further refined based on Bayes decision rule. Finally, marching cubes algorithm is applied to reconstruct a 3D model and extract the outer surface of femoral head and proximal acetabulum. Experimental results show that this method is an accurate segmentation technique for femoral head and proximal acetabulum and it can be applied as a tool in medical practice.展开更多
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
文摘Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgical simulation.However,this 3D echocardiogram involves a trade-off difficulty between accu-racy and efficient computation in clinical diagnosis.This paper presents a novel Flip Directional 3D Volume Reconstruction(FD-3DVR)method for the recon-struction of echocardiogram images.The proposed method consists of two main steps:multiplanar volumetric imaging and 3D volume reconstruction.In the crea-tion of multiplanar volumetric imaging,two-dimensional(2D)image pixels are mapped into voxels of the volumetric grid.As the obtained slices are discontin-uous,there are some missing voxels in the volume data.To restore the structural and textural information of 3D ultrasound volume,the proposed method creates a volume pyramid in parallel with theflip directional texture pyramid.Initially,the nearest neighbors of missing voxels in the multiplanar volumetric imaging are identified by 3D ANN(Approximate Nearest Neighbor)patch matching method.Furthermore,aflip directional texture pyramid is proposed and aggregated with distance in patch matching tofind out the most similar neighbors.In the recon-struction step,structural and textural information obtained from differentflip angle directions can reconstruct 3D volume well with the desired accuracy.Com-pared with existing 3D reconstruction methods,the proposed Flip Directional 3D Volume Reconstruction(FD-3DVR)method provides superior performance for the mean peak signal-to-noise ratio(40.538 for the proposed method I and 39.626 for the proposed method II).Experimental results performed on the cardi-ac datasets demonstrate the efficiency of the proposed method for the reconstruc-tion of echocardiogram images.
基金National Natural Science Foundation of China(No.61771123)。
文摘The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.
文摘<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and Methods:</strong> The anatomical subject was a 33-year-old Korean man who died of leukemia. He was 164 cm tall and weighed 55 kg. This man donated his body to science. Her body was frozen and cut into several anatomical sections after an MRI and CT scan. These anatomical sections were made using a special saw called a 0.2 mm thick cryomacrotome. Thus 8100 cuts were obtained. Only the sections numbered 940 to 1200 were used for our study. A segmentation by manual contouring of the different parts of the typical cervical vertebra was made using the software Winsurf version 3.5 on a laptop PC running Windows 7 equipped with a Ram of 8 gigas. <strong>Results:</strong> Our 3D vector model of the typical cervical vertebra is easily manipulated using the Acrobat 3DPDF interface. Each part of the vertebra accessible in a menu can be displayed, hidden or made transparent, and 3D labels are available as well as educational menus for learning anatomy. <strong>Conclusion: </strong>This original work constitutes a remarkable educational tool for the anatomical study of the typical cervical vertebra and can also be used as a 3D atlas for simulation purposes for training in therapeutic gestures.
基金Supported by the National Natural Science Foundation of China(41901405,41725005,41531177)and the National Key Research and Development Program of China(2016YFF0103501).
文摘Background Three-dimensional(3D)building models with unambiguous roof plane geometry parameters,roof structure units,and linked topology provide essential data for many applications related to human activities in urban environments.The task of 3D reconstruction from point clouds is still in the development phase,especially the recognition and interpretation of roof topological structures.Methods This study proposes a novel visual perception-based approach to automatically decompose and reconstruct building point clouds into meaningful and simple parametric structures,while the associated mutual relationships between the roof plane geometry and roof structure units are expressed by a hierarchical topology tree.First,a roof plane extraction is performed by a multi-label graph cut energy optimization framework and a roof structure graph(RSG)model is then constructed to describe the roof topological geometry with common adjacency,symmetry,and convexity rules.Moreover,a progressive roof decomposition and refinement are performed,generating a hierarchical representation of the 3D roof structure models.Finally,a visual plane fitted residual or area constraint process is adopted to generate the RSG model with different levels of details.Results Two airborne laser scanning datasets with different point densities and roof styles were tested,and the performance evaluation metrics were obtained by International Society for Photogrammetry and Remote Sensing,achieving a correctness and accuracy of 97.7%and 0.29m,respectively.Conclusions The standardized assessment results demonstrate the effectiveness and robustness of the proposed approach,showing its ability to generate a variety of structural models,even with missing data.
基金National Natural Science Foundation of China(No.61471325)
文摘The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteristics reconstruction technology was brought forward to improve in these aspects,which is defined to directly reconstruct the characteristics of the projection for the best requirements not the overall image quality.The two-dimension(2D)and three-dimension(3D)CT characteristics reconstruction algorithm were firstly introduced,then by detailed analysis,experimental results and comparsion of parameters calculated,its advantages in keeping better high-frequency feature,better noise immunity,short time-consuming and easier design are verified.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Strategic Program of Chinese Academy of Sciences(Grant No.XDB10030400)。
文摘The three-dimensional(3D)pore structures and permeability of shale are critical for forecasting gas production capacity and guiding pressure differential control in practical reservoir extraction.However,few investigations have analyzed the effects of microscopic organic matter(OM)morphology and 3D pore nanostructures on the stress sensitivity,which are precisely the most unique and controlling factors of reservoir quality in shales.In this study,ultra-high nanoscale-resolution imaging experiments,i.e.focused ion beam-scanning electron microscopy(FIB-SEMs),were conducted on two organic-rich shale samples from Longmaxi and Wufeng Formations in northern Guizhou Depression,China.Pore morphology,porosity of 3D pore nanostructures,pore size distribution,and connectivity of the six selected regions of interest(including clump-shaped OMs,interstitial OMs,framboidal pyrite,and microfractures)were qualitatively and quantitatively characterized.Pulse decay permeability(PDP)measurement was used to investigate the variation patterns of stress-dependent permeability and stress sensitivity of shales under different confining pressures and pore pressures,and the results were then used to calculate the Biot coefficients for the two shale formations.The results showed that the samples have high OM porosity and 85%of the OM pores have the radius of less than 40 nm.The OM morphology and pore structure characteristics of the Longmaxi and Wufeng Formations were distinctly different.In particular,the OM in the Wufeng Formation samples developed some OM pores with radius larger than500 nm,which significantly improved the connectivity.The macroscopic permeability strongly depends on the permeability of OM pores.The stress sensitivity of permeability of Wufeng Formation was significantly lower than that of Longmaxi Formation,due to the differences in OM morphology and pore structures.The Biot coefficients of 0.729 and 0.697 were obtained for the Longmaxi and Wufeng Formations,respectively.
基金This work was supported by the Klaus Tschira Foundation Heidelberg and the project[FA1189/3-1]funded by the Deutsche Forschungsgemeinschaft(DFG).
文摘Repetitive structures of a building share features in terms of geometries and appearance and,therefore,the 3D information for these structures can be transferred from one specification to another for the purpose of 3D modeling and reconstruction once they are identified as repetitive structures.In this paper,a novel approach is proposed for the detection of the repetitive structures specified by the polygons of a building’s footprints.Instead of directly operating on the polygon in 2D space,the polygon is converted into a bend angle function representation in 1D space,whereby an extrusion is represented as a closed polygon intersected by the x-axis and located above it,while an intrusion is represented as a closed polygon below the x-axis.In this way,a polygon of a footprint is decomposed into a number of extrusions and intrusions which can in turn be processed.The task of detecting any repetitive structures specified in a building’s footprints then becomes the task of clustering the intersected polygons in the bend angle function space.The extrusions/intrusions which can be placed in the same clusters can be regarded as repetitive structures.Experiments show that this proposed approach can detect repetitive structures with different sizes,orientations and complexities.
基金Project supported by the National Key R&D Program of China(No.2022YFB3303301)the National Natural Science Foundation of China(Nos.62006208,62107035,and 62207024)the Public Welfare Research Program of Huzhou Science and Technology Bureau,China(No.2022GZ01)。
文摘The rise of artificial intelligence generated content(AIGC)has been remarkable in the language and image fields,but artificial intelligence(AI)generated three-dimensional(3D)models are still under-explored due to their complex nature and lack of training data.The conventional approach of creating 3D content through computer-aided design(CAD)is labor-intensive and requires expertise,making it challenging for novice users.To address this issue,we propose a sketch-based 3D modeling approach,Deep3DSketch-im,which uses a single freehand sketch for modeling.This is a challenging task due to the sparsity and ambiguity.Deep3DSketch-im uses a novel data representation called the signed distance field(SDF)to improve the sketch-to-3D model process by incorporating an implicit continuous field instead of voxel or points,and a specially designed neural network that can capture point and local features.Extensive experiments are conducted to demonstrate the effectiveness of the approach,achieving state-of-the-art(SOTA)performance on both synthetic and real datasets.Additionally,users show more satisfaction with results generated by Deep3DSketch-im,as reported in a user study.We believe that Deep3DSketch-im has the potential to revolutionize the process of 3D modeling by providing an intuitive and easy-to-use solution for novice users.
基金This work was supported by the Equipment Pre-Research Foundation of China(6140001020310).
文摘Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches.
基金Project supported by the Natural Science Foundation of China(Grant No.51622211)the Pioneer Hundred Talents Program of Chinese Academy of Sciences
文摘Heterogeneous catalysts are the most important catalysts in industrial reactions. Nanocatalysts, with size ranging from hundreds of nanometers to the atomic scale, possess activities that are closely connected to their structural characteristics such as particle size, surface morphology, and three-dimensional topography. Recently, the development of advanced analytical transmission electron microscopy(TEM) techniques, especially quantitative high-angle annular darkfield(HAADF) imaging and high-energy resolution spectroscopy analysis in scanning transmission electron microscopy(STEM) at the atomic scale, strengthens the power of(S)TEM in analyzing the structural/chemical information of heterogeneous catalysts. Three-dimensional reconstruction from two-dimensional projected images and the real-time recording of structural evolution during catalytic reactions using in-situ(S)TEM methods further broaden the scope of(S)TEM observation. The atomic-scale structural information obtained from high-resolution(S)TEM has proven to be of significance for better understanding and designing of new catalysts with enhanced performance.
文摘Recently, orthogonal moments have become efficient tools for two-dimensional and three-dimensional(2D and 3D) image not only in pattern recognition, image vision, but also in image processing and applications engineering. Yet, there is still a major difficulty in 3D rotation invariants. In this paper, we propose new sets of invariants for 2D and 3D rotation, scaling and translation based on orthogonal radial Hahn moments. We also present theoretical mathematics to derive them. Thus, this paper introduces in the first case new 2D radial Hahn moments based on polar representation of an object by one-dimensional orthogonal discrete Hahn polynomials, and a circular function. In the second case, we present new 3D radial Hahn moments using a spherical representation of volumetric image by one-dimensional orthogonal discrete Hahn polynomials and a spherical function. Further 2D and 3D invariants are derived from the proposed 2D and 3D radial Hahn moments respectively, which appear as the third case. In order to test the proposed approach, we have resolved three issues: the image reconstruction, the invariance of rotation, scaling and translation, and the pattern recognition. The result of experiments show that the Hahn moments have done better than the Krawtchouk moments, with and without noise. Simultaneously, the mentioned reconstruction converges quickly to the original image using 2D and 3D radial Hahn moments, and the test images are clearly recognized from a set of images that are available in COIL-20 database for 2D image, and Princeton shape benchmark(PSB) database for 3D image.
文摘Computer-aided hip surgery planning and implant design applications require accurate segmentation of femoral head and proximal acetabulum. An accurate outer surface extraction of femoral head using marching cubes algorithm remains challenging due to deformed shapes and extremely narrow inter-bone regions. In this paper, we present an automatic and fast approach for segmentation of femoral head and proximal acetabulum which leads to accurate and compact representation of femoral head using marching cubes algorithm. At first, valley-emphasized images are constructed from original images so that valleys stand out in high relief. Otsu's multiple thresholding technique is applied to seperate the images into bone and non-bone classes. Region growing method and threedimensional(3D) morphological operations are performed to fill holes in the bone. In the reclassification process,the bone regions are further segmented, and the boundaries of the bone regions are further refined based on Bayes decision rule. Finally, marching cubes algorithm is applied to reconstruct a 3D model and extract the outer surface of femoral head and proximal acetabulum. Experimental results show that this method is an accurate segmentation technique for femoral head and proximal acetabulum and it can be applied as a tool in medical practice.