The actual manufacture of supercapacitors(SCs)is restricted by the inadequate energy density,and the energy density of devices can be properly promoted by assembling zinc-ion capacitors(ZICs)which used capacitive cath...The actual manufacture of supercapacitors(SCs)is restricted by the inadequate energy density,and the energy density of devices can be properly promoted by assembling zinc-ion capacitors(ZICs)which used capacitive cathode and battery-type anode.Two-dimensional(2D)MXene has brought great focuses in the electrode research on the foundation of large redox-active surface,but the specific capacitance is still affected by the tight stacking of interlaminations.Ti_(3)C_(2)T_(x)@polyaniline(PANI)heterostructures are prepared by uniformly depositing the conductive polymer PANI nanorods as the intercalation agent into the external of Ti_(3)C_(2)T_(x)nanosheets to inhibit stacking.Subsequently,by using graphene oxide(GO)-assisted low-temperature hydrothermal self-assembly manufacture,2D heterostructures are assembled into the three-dimensional(3D)porous crosslinked Ti_(3)C_(2)T_(x)@PANI-reduced graphene oxide(RGO)hydrogels.Attributed to the synergistic work of PANI nanorods,Ti_(3)C_(2)T_(X)nanosheets,and 3D crosslinking frameworks of RGO to match capacitive and battery effects,3D porous hierarchical Ti_(3)C_(2)T_(x)@PANI-RGO heterostructure hydrogels have rich ion transport channels,a large number of active sites,and excellent reaction kinetics.ZIC is assembled by using Ti_(3)C_(2)T_(x)@PANI-RGO heterostructure hydrogels as cathodes and zinc foil as anodes.In this work,Ti_(3)C_(2)T_(x)@PANI-RGO//Zn ZIC exhibits a wide working window(2.0 V),marked specific capacitance(589.89 F·g^(−1)at 0.5 A·g−1),salient energy density(327.71 Wh·kg^(−1)at 513.61 W·kg^(−1)and 192.20 Wh·kg^(−1)at 13,005.87 W·kg^(−1)),and durable cycling stability(97.87%capacitance retention after 10,000 cycles at 10 A·g^(−1)).This study emphasizes the device design of ZICs and the broad prospect of Ti_(3)C_(2)T_(x)-based hydrogels as viable cathodes for ZICs.展开更多
We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of elec...We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites,easy access of electrolyte ions,and facile charge transport for flexible wearable applications.The interconnected and compact electrode delivers a high volumetric capacitance(gravimetric capacitance)of 73 F cm−3(2446 F g−1),excellent rate capability,and cycle stability.The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire(NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire(Mn3O4/3D-Ni)hybrid supercapacitor exhibits energy density of 153.3 Wh kg−1 and power density of 8810 W kg−1.The red lightemitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions.The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge–discharge times,for smart wearable and implantable devices.展开更多
基金the National Key Research and Development Program of China(No.2022YFC2105900)the National Natural Science Foundation of China(No.52073022).
文摘The actual manufacture of supercapacitors(SCs)is restricted by the inadequate energy density,and the energy density of devices can be properly promoted by assembling zinc-ion capacitors(ZICs)which used capacitive cathode and battery-type anode.Two-dimensional(2D)MXene has brought great focuses in the electrode research on the foundation of large redox-active surface,but the specific capacitance is still affected by the tight stacking of interlaminations.Ti_(3)C_(2)T_(x)@polyaniline(PANI)heterostructures are prepared by uniformly depositing the conductive polymer PANI nanorods as the intercalation agent into the external of Ti_(3)C_(2)T_(x)nanosheets to inhibit stacking.Subsequently,by using graphene oxide(GO)-assisted low-temperature hydrothermal self-assembly manufacture,2D heterostructures are assembled into the three-dimensional(3D)porous crosslinked Ti_(3)C_(2)T_(x)@PANI-reduced graphene oxide(RGO)hydrogels.Attributed to the synergistic work of PANI nanorods,Ti_(3)C_(2)T_(X)nanosheets,and 3D crosslinking frameworks of RGO to match capacitive and battery effects,3D porous hierarchical Ti_(3)C_(2)T_(x)@PANI-RGO heterostructure hydrogels have rich ion transport channels,a large number of active sites,and excellent reaction kinetics.ZIC is assembled by using Ti_(3)C_(2)T_(x)@PANI-RGO heterostructure hydrogels as cathodes and zinc foil as anodes.In this work,Ti_(3)C_(2)T_(x)@PANI-RGO//Zn ZIC exhibits a wide working window(2.0 V),marked specific capacitance(589.89 F·g^(−1)at 0.5 A·g−1),salient energy density(327.71 Wh·kg^(−1)at 513.61 W·kg^(−1)and 192.20 Wh·kg^(−1)at 13,005.87 W·kg^(−1)),and durable cycling stability(97.87%capacitance retention after 10,000 cycles at 10 A·g^(−1)).This study emphasizes the device design of ZICs and the broad prospect of Ti_(3)C_(2)T_(x)-based hydrogels as viable cathodes for ZICs.
基金supported by national research foundation of Korea(NRF)(No.NRF-2019R1H1A2039743)S-Oil corporation,and “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry and Energy,Republic of Korea(No.20194010201890)
文摘We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites,easy access of electrolyte ions,and facile charge transport for flexible wearable applications.The interconnected and compact electrode delivers a high volumetric capacitance(gravimetric capacitance)of 73 F cm−3(2446 F g−1),excellent rate capability,and cycle stability.The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire(NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire(Mn3O4/3D-Ni)hybrid supercapacitor exhibits energy density of 153.3 Wh kg−1 and power density of 8810 W kg−1.The red lightemitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions.The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge–discharge times,for smart wearable and implantable devices.