In this paper, the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space; the corresponding exact energy is obtained, and the analytic eigenfunction is presen...In this paper, the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space; the corresponding exact energy is obtained, and the analytic eigenfunction is presented in terms of the confluent hypergeometric function. It is shown that in the non-commutative space, the isotropic charged harmonic oscillator in uniform magnetic field has the similar behaviors to the Landau problem.展开更多
The quantization of circuits has received to be rather attractive in domains of solid state—molecular—and biophysics, since the quanta referred to as Q-bits play a significant role in the design of the quantum compu...The quantization of circuits has received to be rather attractive in domains of solid state—molecular—and biophysics, since the quanta referred to as Q-bits play a significant role in the design of the quantum computer and entangled structures. Quantized circuits cannot be applied without modifications, since the energy differences are not equidistant and the polarization of the excited states has to be accounted for having particular importance for the creation of virtual states. Applications of the presented theory are scanning methods in radiotherapy without multi-leaf collimators, which may be realized in tomo-scanning radiotherapy and in the keV domain, which provides a new design of CT. The problem of lateral scatter in the target and energy storage by heat production is significantly reduced by a multilayer system with focusing the impinging electrons at the walls and by a magnetic field. The verification of the Heisenberg-Euler scatter of crossing beams of 9 MV is a central problem of photon physics and can be solved by the new bremsstrahlung technique. A comparison with GEANT 4 Monte-Carlo data indicates that the presented method also works in the GeV domain, and a multi-target can improve the bremsstrahlung yield. GEANT 4 provides the spatial distribution, whereas the virtual oscillator states only show the created energy spectrum. In every case, the exploitation yield can be drastically improved by the superiority of the focused multitarget system compared to a single standard target, and the door to new technologies is opened.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
基金National Natural Science Foundation of China(10347003,60666001)Planned Training Excellent Scientific and Technological Youth Foundation of Guizhou Province,China(2002,2013)Science Foundation of Guizhou Province,China,and Creativity Foundation for Graduate Guizhou University,China(2006031)
文摘In this paper, the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space; the corresponding exact energy is obtained, and the analytic eigenfunction is presented in terms of the confluent hypergeometric function. It is shown that in the non-commutative space, the isotropic charged harmonic oscillator in uniform magnetic field has the similar behaviors to the Landau problem.
文摘The quantization of circuits has received to be rather attractive in domains of solid state—molecular—and biophysics, since the quanta referred to as Q-bits play a significant role in the design of the quantum computer and entangled structures. Quantized circuits cannot be applied without modifications, since the energy differences are not equidistant and the polarization of the excited states has to be accounted for having particular importance for the creation of virtual states. Applications of the presented theory are scanning methods in radiotherapy without multi-leaf collimators, which may be realized in tomo-scanning radiotherapy and in the keV domain, which provides a new design of CT. The problem of lateral scatter in the target and energy storage by heat production is significantly reduced by a multilayer system with focusing the impinging electrons at the walls and by a magnetic field. The verification of the Heisenberg-Euler scatter of crossing beams of 9 MV is a central problem of photon physics and can be solved by the new bremsstrahlung technique. A comparison with GEANT 4 Monte-Carlo data indicates that the presented method also works in the GeV domain, and a multi-target can improve the bremsstrahlung yield. GEANT 4 provides the spatial distribution, whereas the virtual oscillator states only show the created energy spectrum. In every case, the exploitation yield can be drastically improved by the superiority of the focused multitarget system compared to a single standard target, and the door to new technologies is opened.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.