Hyperspectral images (HSI) have hundreds of bands, which impose heavy burden on data storage and transmission bandwidth. Quite a few compression techniques have been explored for HSI in the past decades. One high perf...Hyperspectral images (HSI) have hundreds of bands, which impose heavy burden on data storage and transmission bandwidth. Quite a few compression techniques have been explored for HSI in the past decades. One high performing technique is the combination of principal component analysis (PCA) and JPEG-2000 (J2K). However, since there are several new compression codecs developed after J2K in the past 15 years, it is worthwhile to revisit this research area and investigate if there are better techniques for HSI compression. In this paper, we present some new results in HSI compression. We aim at perceptually lossless compression of HSI. Perceptually lossless means that the decompressed HSI data cube has a performance metric near 40 dBs in terms of peak-signal-to-noise ratio (PSNR) or human visual system (HVS) based metrics. The key idea is to compare several combinations of PCA and video/ image codecs. Three representative HSI data cubes were used in our studies. Four video/image codecs, including J2K, X264, X265, and Daala, have been investigated and four performance metrics were used in our comparative studies. Moreover, some alternative techniques such as video, split band, and PCA only approaches were also compared. It was observed that the combination of PCA and X264 yielded the best performance in terms of compression performance and computational complexity. In some cases, the PCA + X264 combination achieved more than 3 dBs than the PCA + J2K combination.展开更多
We introduce in this paper an extension of the Multimodal Compression technique (MC) for the purpose of coding hyperspectral image sequences. The main idea requires few steps, namely: (1) reducing the size of the sequ...We introduce in this paper an extension of the Multimodal Compression technique (MC) for the purpose of coding hyperspectral image sequences. The main idea requires few steps, namely: (1) reducing the size of the sequence by inserting smooth images containing less information into the remaining images of the same sequence, (2) then coding the new compacted sequence using 3D-SPIHT algorithm. In this new scheme, called MC-3D-SPIHT, the insertion is achieved only in the contour of each image, according to a non-supervised way, so that one can preserve the Region of Interest (ROI) quality. For this purpose, a mixing function is employed. After the decoding process, inserted images are extracted by a separation function and the original sequence is reconstructed. By considering data from AVIRIS database, we will show how one decrease significantly the computing time for both coding and decoding.展开更多
In this paper, the 3-D Wavelet-Fractal coder was used to compress the hyperspectral remote sensing image, which is a combination of 3-D improved set partitioning in hierarchical trees (SPIHT) coding and 3-D fractal ...In this paper, the 3-D Wavelet-Fractal coder was used to compress the hyperspectral remote sensing image, which is a combination of 3-D improved set partitioning in hierarchical trees (SPIHT) coding and 3-D fractal coding. Hyperspectral image date cube was first translated by 3-D wavelet and the 3-D fractal compression ceding was applied to lowest frequency subband. The remaining coefficients of higher frequency sub-bands were encoding by 3-D improved SPIHT. We used the block set instead of the hierarchical trees to enhance SPIHT's flexibility. The classical eight kinds of affme transformations in 2-D fractal image compression were generalized to nineteen for the 3-D fractal image compression. The new compression method had been tested on MATLAB. The experiment results indicate that we can gain high compression ratios and the information loss is acceptable.展开更多
Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize th...Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.展开更多
文摘Hyperspectral images (HSI) have hundreds of bands, which impose heavy burden on data storage and transmission bandwidth. Quite a few compression techniques have been explored for HSI in the past decades. One high performing technique is the combination of principal component analysis (PCA) and JPEG-2000 (J2K). However, since there are several new compression codecs developed after J2K in the past 15 years, it is worthwhile to revisit this research area and investigate if there are better techniques for HSI compression. In this paper, we present some new results in HSI compression. We aim at perceptually lossless compression of HSI. Perceptually lossless means that the decompressed HSI data cube has a performance metric near 40 dBs in terms of peak-signal-to-noise ratio (PSNR) or human visual system (HVS) based metrics. The key idea is to compare several combinations of PCA and video/ image codecs. Three representative HSI data cubes were used in our studies. Four video/image codecs, including J2K, X264, X265, and Daala, have been investigated and four performance metrics were used in our comparative studies. Moreover, some alternative techniques such as video, split band, and PCA only approaches were also compared. It was observed that the combination of PCA and X264 yielded the best performance in terms of compression performance and computational complexity. In some cases, the PCA + X264 combination achieved more than 3 dBs than the PCA + J2K combination.
文摘We introduce in this paper an extension of the Multimodal Compression technique (MC) for the purpose of coding hyperspectral image sequences. The main idea requires few steps, namely: (1) reducing the size of the sequence by inserting smooth images containing less information into the remaining images of the same sequence, (2) then coding the new compacted sequence using 3D-SPIHT algorithm. In this new scheme, called MC-3D-SPIHT, the insertion is achieved only in the contour of each image, according to a non-supervised way, so that one can preserve the Region of Interest (ROI) quality. For this purpose, a mixing function is employed. After the decoding process, inserted images are extracted by a separation function and the original sequence is reconstructed. By considering data from AVIRIS database, we will show how one decrease significantly the computing time for both coding and decoding.
基金National Natural Science Foundation of China (No.60975084)
文摘In this paper, the 3-D Wavelet-Fractal coder was used to compress the hyperspectral remote sensing image, which is a combination of 3-D improved set partitioning in hierarchical trees (SPIHT) coding and 3-D fractal coding. Hyperspectral image date cube was first translated by 3-D wavelet and the 3-D fractal compression ceding was applied to lowest frequency subband. The remaining coefficients of higher frequency sub-bands were encoding by 3-D improved SPIHT. We used the block set instead of the hierarchical trees to enhance SPIHT's flexibility. The classical eight kinds of affme transformations in 2-D fractal image compression were generalized to nineteen for the 3-D fractal image compression. The new compression method had been tested on MATLAB. The experiment results indicate that we can gain high compression ratios and the information loss is acceptable.
基金This work was supported by National Natural Science Foundation of China (No.60372066)
文摘Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.