We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a cons...We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.展开更多
This paper presents the Approximate Incrtial Manifold ∑ and its successive approximate incrtial manifold ∑i and ∑ij . We give the estimates of thickness of neighborhood of ∑, ∑j, Ejt respectively in which the eve...This paper presents the Approximate Incrtial Manifold ∑ and its successive approximate incrtial manifold ∑i and ∑ij . We give the estimates of thickness of neighborhood of ∑, ∑j, Ejt respectively in which the every solution of Navier-Stokcs equation enters.Another part of this paper presents construction method for A.I.M. by multilevel finite clement method and give error estimates of the approximate solution of incrtial form.展开更多
This paper is devoted to the mixed Legendre spectral-finite element approximation of the three-dimensional, non-periodic, unsteady Navier-Stokes equations. A class of fully discrete schemes are constructed with artifi...This paper is devoted to the mixed Legendre spectral-finite element approximation of the three-dimensional, non-periodic, unsteady Navier-Stokes equations. A class of fully discrete schemes are constructed with artificial compression. The generalized stability and convergence are proved strictly on the assumption that the two-dimensional inf-sup condition of the finite element approximation is satisfied.展开更多
In this paper, homotopy analysis method (HAM) and Padé approximant will be considered for finding analytical solution of three-dimensional viscous flow near an infinite rotating disk which is a well-known classic...In this paper, homotopy analysis method (HAM) and Padé approximant will be considered for finding analytical solution of three-dimensional viscous flow near an infinite rotating disk which is a well-known classical problem in fluid mechanics. The solution is compared to the numerical (fourth-order Runge-Kutta) solution and the convergence of the obtained series solution is carefully analyzed. The results illustrate that HAM-Padé is an appropriate method in solving the systems of nonlinear equations.展开更多
A Fourier-Chebyshev pseudospectral scheme is proposed for three-dimensionalvorticily equation with unilaterally periodic boundary condition. The generalized stability and convergence are analysed. The numerical result...A Fourier-Chebyshev pseudospectral scheme is proposed for three-dimensionalvorticily equation with unilaterally periodic boundary condition. The generalized stability and convergence are analysed. The numerical results are presented.展开更多
Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic...Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.展开更多
Two-level finite element approximation to stream function form of unsteady Navier-Stokes equations is studied.This algorithm involves solving one nonlinear system on a coarse grid and one linear problem on a fine grid...Two-level finite element approximation to stream function form of unsteady Navier-Stokes equations is studied.This algorithm involves solving one nonlinear system on a coarse grid and one linear problem on a fine grid.Moreover,the scaling between these two grid sizes is super-linear.Approximation,stability and convergence aspects of a fully discrete scheme are analyzed.At last a numrical example is given whose results show that the algorithm proposed in this paper is effcient.展开更多
The incompressible Navier Stokes equations are solved via variables of vorticity and velocity. Firstly, a rigorous variational framework with the equivalence between the velocity pressure and the vorticity velocity fo...The incompressible Navier Stokes equations are solved via variables of vorticity and velocity. Firstly, a rigorous variational framework with the equivalence between the velocity pressure and the vorticity velocity formulations is presented in a Lipschitz domain. Next, a class of Galerkin finite element approximations of the corresponding variational form is introduced, and a convergence analysis is given for the Stokes problem. Finally, an iterative finite element solver for the Navier Stokes problem is proposed.展开更多
We prove that the limits of the semi-discrete and the discrete semi-implicit Euler schemes for the 3D Navier-Stokes equations supplemented with Dirichlet boundary conditions are suitable in the sense of Scheffer [1]. ...We prove that the limits of the semi-discrete and the discrete semi-implicit Euler schemes for the 3D Navier-Stokes equations supplemented with Dirichlet boundary conditions are suitable in the sense of Scheffer [1]. This provides a new proof of the existence of suitable weak solutions, first established by Caffarelli, Kohn and Nirenberg [2]. Our results are similar to the main result in [3]. We also present some additional remarks and open questions on suitable solutions.展开更多
This paper proposes a new approach that combines the reduced differential transform method (RDTM), a resummation method based on the Yang transform, and a Padé approximant to the kinetically reduced local Navier-...This paper proposes a new approach that combines the reduced differential transform method (RDTM), a resummation method based on the Yang transform, and a Padé approximant to the kinetically reduced local Navier-Stokes equation to find approximate solutions to the problem of lid-driven square cavity flow. The new approach, called PYRDM, considerably improves the convergence rate of the truncated series solution of RDTM and also is based on a simple process that yields highly precise estimates. The numerical results achieved by this method are compared to earlier studies’ results. Our results indicate that this method is more efficient and precise in generating analytic solutions. Furthermore, it provides highly precise solutions with good convergence that is simple to apply for great Reynolds and low Mach numbers. Moreover, the new solution’ graphs demonstrate the new approach’s validity, usefulness, and necessity.展开更多
基金Supported by National Natural Science Foundation of China(11271305,11161011)Science and Technology Foundation of Guizhou Province of China(LKS[2012]11,LKS[2013]03,LKS[2013]05)
文摘We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.
文摘This paper presents the Approximate Incrtial Manifold ∑ and its successive approximate incrtial manifold ∑i and ∑ij . We give the estimates of thickness of neighborhood of ∑, ∑j, Ejt respectively in which the every solution of Navier-Stokcs equation enters.Another part of this paper presents construction method for A.I.M. by multilevel finite clement method and give error estimates of the approximate solution of incrtial form.
文摘This paper is devoted to the mixed Legendre spectral-finite element approximation of the three-dimensional, non-periodic, unsteady Navier-Stokes equations. A class of fully discrete schemes are constructed with artificial compression. The generalized stability and convergence are proved strictly on the assumption that the two-dimensional inf-sup condition of the finite element approximation is satisfied.
文摘In this paper, homotopy analysis method (HAM) and Padé approximant will be considered for finding analytical solution of three-dimensional viscous flow near an infinite rotating disk which is a well-known classical problem in fluid mechanics. The solution is compared to the numerical (fourth-order Runge-Kutta) solution and the convergence of the obtained series solution is carefully analyzed. The results illustrate that HAM-Padé is an appropriate method in solving the systems of nonlinear equations.
文摘A Fourier-Chebyshev pseudospectral scheme is proposed for three-dimensionalvorticily equation with unilaterally periodic boundary condition. The generalized stability and convergence are analysed. The numerical results are presented.
基金Project supported by the National Natural Science Foundation of China (Nos.40175014, 90411006)the Science Foundation of Shanghai Municipal Commission of Science and Technology(No.02DJ14032)
文摘Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.
文摘Two-level finite element approximation to stream function form of unsteady Navier-Stokes equations is studied.This algorithm involves solving one nonlinear system on a coarse grid and one linear problem on a fine grid.Moreover,the scaling between these two grid sizes is super-linear.Approximation,stability and convergence aspects of a fully discrete scheme are analyzed.At last a numrical example is given whose results show that the algorithm proposed in this paper is effcient.
文摘The incompressible Navier Stokes equations are solved via variables of vorticity and velocity. Firstly, a rigorous variational framework with the equivalence between the velocity pressure and the vorticity velocity formulations is presented in a Lipschitz domain. Next, a class of Galerkin finite element approximations of the corresponding variational form is introduced, and a convergence analysis is given for the Stokes problem. Finally, an iterative finite element solver for the Navier Stokes problem is proposed.
文摘We prove that the limits of the semi-discrete and the discrete semi-implicit Euler schemes for the 3D Navier-Stokes equations supplemented with Dirichlet boundary conditions are suitable in the sense of Scheffer [1]. This provides a new proof of the existence of suitable weak solutions, first established by Caffarelli, Kohn and Nirenberg [2]. Our results are similar to the main result in [3]. We also present some additional remarks and open questions on suitable solutions.
文摘This paper proposes a new approach that combines the reduced differential transform method (RDTM), a resummation method based on the Yang transform, and a Padé approximant to the kinetically reduced local Navier-Stokes equation to find approximate solutions to the problem of lid-driven square cavity flow. The new approach, called PYRDM, considerably improves the convergence rate of the truncated series solution of RDTM and also is based on a simple process that yields highly precise estimates. The numerical results achieved by this method are compared to earlier studies’ results. Our results indicate that this method is more efficient and precise in generating analytic solutions. Furthermore, it provides highly precise solutions with good convergence that is simple to apply for great Reynolds and low Mach numbers. Moreover, the new solution’ graphs demonstrate the new approach’s validity, usefulness, and necessity.
基金The National Natural Science Foundation of China(11126311)the Science Foundation for Youths of Shanxi Province(2010JQ1016)the Science Research Foundation of Department of Education of Shaanxi Province(2010JK560)