Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this c...Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.展开更多
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu...Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.展开更多
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ...Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.展开更多
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap...Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association o...Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.展开更多
Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association o...Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.JIA publishes manuscripts in the categories of Commentary,Review,Research Article,Letter and Short Communication,focusing on the core subjects:Crop Science Horticulture·Plant ProtectionAnimal Science·Veterinary Medicine·Agro-ecosystem&Environment·Food Science·Agricultural Economics and Management·Agricultural Information Science.展开更多
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag...Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).展开更多
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag...Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIA is a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.展开更多
This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variatio...This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variations. The study modelled seasonal variabilities in the seasonal Standardized Precipitation Index (SPI) and Standardized Agricultural Drought Index (SADI). To necessitate comparison, SADI and SPI were Normalized (from −1 to 1) as they had different ranges and hence could not be compared. From the seasonal indices, the pigeon peas planting season (July to September) was singled out as the most important season to study agricultural droughts. The planting season analysis selected all years with severe conditions (2008, 2009, 2010, 2011, 2017 and 2022) for spatial analysis. Spatial analysis revealed that most areas in the upstream part of the Basin and Coastal region in the lowlands experienced severe to extreme agricultural droughts in highlighted drought years. The modelled agricultural drought results were validated using yield data from two stations in the Basin. The results show that the model performed well with a Pearson Coefficient of 0.87 and a Root Mean Square Error of 0.29. This proactive approach aims to ensure food security, especially in scenarios where the Basin anticipates significantly reduced precipitation affecting water available for agriculture, enabling policymakers, water resource managers and agricultural sector stakeholders to equitably allocate resources and mitigate the effects of droughts in the most affected areas to significantly reduce the socioeconomic drought that is amplified by agricultural drought in rainfed agriculture river basins.展开更多
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag...Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIAis a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.展开更多
Instruction to Authors Aims and Scope Journal of Integrative Agriculture(JIA),formerlyAgricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by ...Instruction to Authors Aims and Scope Journal of Integrative Agriculture(JIA),formerlyAgricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular compon...BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.展开更多
BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,e...BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.展开更多
Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything...Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security.展开更多
Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adapta...Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adaptation to these climatic changes. This research aims to showcase the adaptation strategies deployed by farmers to cope with the increasing climate variability. Surveys were conducted through group and individual discussions with a randomly selected cohort of 150 farmers. Two types of analysis were performed: quantitative and qualitative. The quantitative data analysis was conducted using Statistical Package for the Social Sciences (SPSS) software. The findings reveal that farmers have perceived changes in rainfall patterns, temperature, wind, and their environment. These changes manifest as irregular rainfall, higher temperatures, prolonged drought periods, violent winds accompanied by rain, premature cessation of rains, and reduced flow from water sources. In response, the most common adaptation strategies adopted include selecting new cultivars, early-maturing varieties, crop rotation and diversification, canal dredging, new soil preparation methods, upstream water source protection, and micro-watershed management. The significance of this research lies in its contribution to enhancing farmers’ adaptive capacities by alerting stakeholders in the irrigated perimeters about the consequences of climate change, thereby incorporating the real needs of farmers in future projects.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still...Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still limited to the eastern region(East Nusa Tenggara,West Nusa Tenggara,Java,and South Sulawesi).Therefore,it is crucial to carry out sorghum research on drylands.This research aimed to investigate the effect of sorghum genotype and planting distance and their interaction toward growth and sorghum’s productivity in the Gunungkidul dryland,Yogyakarta,Indonesia.In addition,the farm business analysis,including the feasibility of sorghum farming,was also examined.The research used a randomized complete block design(RCBD),arranged in a 5×4 factorial with 3 replicates.The first treatment consisted of 5 varieties(2 high-yielding varieties(Bioguma 1 and Kawali)and 3 local sorghum varieties(Plonco,Ketan Merah,and Hitam Wareng)).The second treatment consisted of 4 levels of planting distance,namely 50×20 cm,60×20 cm,70×15 cm,and 70×20×20 cm.Analysis of variance was used to analyze the data,where Duncan’s multiple range test(DMRT)was used post hoc.Plant height,panicle height,panicle width,panicle weight,stover weight,grains weight/plot,and productivity were significantly affected by sorghum varieties(p<0.05).However,there was no significant effect from the planting distance treatment and no interaction between planting distance and varietal treatments.Ketan Merah had the highest height,panicle length,and panicle width,while Bioguma 1 had the highest stover weight,panicle weight,grain weight/plot,and productivity.There was a significant linear regression equation,i.e.,productivity=0.0054–0.0003 panicle height+0.4163 grains weight/plot.Our findings on farm business analysis suggested that four out of five tested sorghum varieties were feasible to grow,except for the Ketan Merah variety.The most economically profitable sorghum variety to grow in Gunungkidul dryland was Bioguma 1.展开更多
基金support provided by the UKRI via Grant No.EP/T024607/1Royal Society via grant number IES\R2\222208.
文摘Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
基金Project supported by the National Natural Science Foundation of China (No. 12072337)。
文摘Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.
基金supported by the National Natural Science Foundation of China (No. 52275291)the Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province,China (No. 2023-CX-TD-17)
文摘Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.
基金This work was supported by grants fromthe Sichuan Science and Technology Program(2023NSFSC1877).
文摘Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
文摘Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.
文摘Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.JIA publishes manuscripts in the categories of Commentary,Review,Research Article,Letter and Short Communication,focusing on the core subjects:Crop Science Horticulture·Plant ProtectionAnimal Science·Veterinary Medicine·Agro-ecosystem&Environment·Food Science·Agricultural Economics and Management·Agricultural Information Science.
文摘Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).
文摘Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIA is a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.
文摘This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variations. The study modelled seasonal variabilities in the seasonal Standardized Precipitation Index (SPI) and Standardized Agricultural Drought Index (SADI). To necessitate comparison, SADI and SPI were Normalized (from −1 to 1) as they had different ranges and hence could not be compared. From the seasonal indices, the pigeon peas planting season (July to September) was singled out as the most important season to study agricultural droughts. The planting season analysis selected all years with severe conditions (2008, 2009, 2010, 2011, 2017 and 2022) for spatial analysis. Spatial analysis revealed that most areas in the upstream part of the Basin and Coastal region in the lowlands experienced severe to extreme agricultural droughts in highlighted drought years. The modelled agricultural drought results were validated using yield data from two stations in the Basin. The results show that the model performed well with a Pearson Coefficient of 0.87 and a Root Mean Square Error of 0.29. This proactive approach aims to ensure food security, especially in scenarios where the Basin anticipates significantly reduced precipitation affecting water available for agriculture, enabling policymakers, water resource managers and agricultural sector stakeholders to equitably allocate resources and mitigate the effects of droughts in the most affected areas to significantly reduce the socioeconomic drought that is amplified by agricultural drought in rainfed agriculture river basins.
文摘Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIAis a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.
文摘Instruction to Authors Aims and Scope Journal of Integrative Agriculture(JIA),formerlyAgricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
文摘BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.
基金Supported by National Natural Science Foundation of China,No.82293665Anhui Provincial Department of Education University Research Project,No.2023AH051763.
文摘BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.
文摘Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security.
文摘Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adaptation to these climatic changes. This research aims to showcase the adaptation strategies deployed by farmers to cope with the increasing climate variability. Surveys were conducted through group and individual discussions with a randomly selected cohort of 150 farmers. Two types of analysis were performed: quantitative and qualitative. The quantitative data analysis was conducted using Statistical Package for the Social Sciences (SPSS) software. The findings reveal that farmers have perceived changes in rainfall patterns, temperature, wind, and their environment. These changes manifest as irregular rainfall, higher temperatures, prolonged drought periods, violent winds accompanied by rain, premature cessation of rains, and reduced flow from water sources. In response, the most common adaptation strategies adopted include selecting new cultivars, early-maturing varieties, crop rotation and diversification, canal dredging, new soil preparation methods, upstream water source protection, and micro-watershed management. The significance of this research lies in its contribution to enhancing farmers’ adaptive capacities by alerting stakeholders in the irrigated perimeters about the consequences of climate change, thereby incorporating the real needs of farmers in future projects.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
文摘Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still limited to the eastern region(East Nusa Tenggara,West Nusa Tenggara,Java,and South Sulawesi).Therefore,it is crucial to carry out sorghum research on drylands.This research aimed to investigate the effect of sorghum genotype and planting distance and their interaction toward growth and sorghum’s productivity in the Gunungkidul dryland,Yogyakarta,Indonesia.In addition,the farm business analysis,including the feasibility of sorghum farming,was also examined.The research used a randomized complete block design(RCBD),arranged in a 5×4 factorial with 3 replicates.The first treatment consisted of 5 varieties(2 high-yielding varieties(Bioguma 1 and Kawali)and 3 local sorghum varieties(Plonco,Ketan Merah,and Hitam Wareng)).The second treatment consisted of 4 levels of planting distance,namely 50×20 cm,60×20 cm,70×15 cm,and 70×20×20 cm.Analysis of variance was used to analyze the data,where Duncan’s multiple range test(DMRT)was used post hoc.Plant height,panicle height,panicle width,panicle weight,stover weight,grains weight/plot,and productivity were significantly affected by sorghum varieties(p<0.05).However,there was no significant effect from the planting distance treatment and no interaction between planting distance and varietal treatments.Ketan Merah had the highest height,panicle length,and panicle width,while Bioguma 1 had the highest stover weight,panicle weight,grain weight/plot,and productivity.There was a significant linear regression equation,i.e.,productivity=0.0054–0.0003 panicle height+0.4163 grains weight/plot.Our findings on farm business analysis suggested that four out of five tested sorghum varieties were feasible to grow,except for the Ketan Merah variety.The most economically profitable sorghum variety to grow in Gunungkidul dryland was Bioguma 1.