BACKGROUND Early thrombolytic therapy is crucial to treat acute cerebral infarction,especially since the onset of thrombolytic therapy takes 1-6 h.Therefore,early diagnosis and evaluation of cerebral infarction is imp...BACKGROUND Early thrombolytic therapy is crucial to treat acute cerebral infarction,especially since the onset of thrombolytic therapy takes 1-6 h.Therefore,early diagnosis and evaluation of cerebral infarction is important.AIM To investigate the diagnostic value of magnetic resonance multi-delay threedimensional arterial spin labeling(3DASL)and diffusion kurtosis imaging(DKI)in evaluating the perfusion and infarct area size in patients with acute cerebral ischemia.METHODS Eighty-four patients who experienced acute cerebral ischemia from March 2019 to February 2021 were included.All patients in the acute stage underwent magnetic resonance-based examination,and the data were processed by the system’s own software.The apparent diffusion coefficient(ADC),average diffusion coefficient(MD),axial diffusion(AD),radial diffusion(RD),average kurtosis(MK),radial kurtosis(fairly RK),axial kurtosis(AK),and perfusion parameters post-labeling delays(PLD)in the focal area and its corresponding area were compared.The correlation between the lesion area of cerebral infarction under MK and MD and T2-weighted imaging(T2WI)was analyzed.RESULTS The DKI parameters of focal and control areas in the study subjects were compared.The ADC,MD,AD,and RD values in the lesion area were significantly lower than those in the control area.The MK,RK,and AK values in the lesion area were significantly higher than those in the control area.The MK/MD value in the infarct lesions was used to determine the matching situation.MK/MD<5 mm was considered matching and MK/MD≥5 mm was considered mismatching.PLD1.5s and PLD2.5s perfusion parameters in the central,peripheral,and control areas of the infarct lesions in MK/MD-matched and-unmatched patients were not significantly different.PLD1.5s and PLD2.5s perfusion parameter values in the central area of the infarct lesions in MK/MD-matched and-unmatched patients were significantly lower than those in peripheral and control areas.The MK and MD maps showed a lesion area of 20.08±5.74 cm^(2) and 22.09±5.58 cm^(2),respectively.T2WI showed a lesion area of 19.76±5.02 cm^(2).There were no significant differences in the cerebral infarction lesion areas measured using the three methods.MK,MD,and T2WI showed a good correlation.CONCLUSION DKI parameters showed significant difference between the focal and control areas in patients with acute ischemic cerebral infarction.3DASL can effectively determine the changes in perfusion levels in the lesion area.There was a high correlation between the area of the infarct lesions diagnosed by DKI and T2WI.展开更多
BACKGROUND Type 2 diabetes mellitus(T2DM) has been strongly associated with an increased risk of developing cognitive dysfunction and dementia.The mechanisms of diabetes-associated cognitive dysfunction(DACD) have not...BACKGROUND Type 2 diabetes mellitus(T2DM) has been strongly associated with an increased risk of developing cognitive dysfunction and dementia.The mechanisms of diabetes-associated cognitive dysfunction(DACD) have not been fully elucidated to date.Some studies proved lower cerebral blood flow(CBF) in the hippocampus was associated with poor executive function and memory in T2DM.Increasing evidence showed that diabetes leads to abnormal vascular endothelial growth factor(VEGF) expression and CBF changes in humans and animal models.In this study,we hypothesized that DACD was correlated with CBF alteration as measured by three-dimensional(3D) arterial spin labeling(3D-ASL) and VEGF expression in the hippocampus.AIM To assess the correlation between CBF(measured by 3D-ASL and VEGF expression) and DACD in a rat model of T2DM.METHODS Forty Sprague-Dawley male rats were divided into control and T2DM groups.The T2DM group was established by feeding rats a high-fat diet and glucose to induce impaired glucose tolerance and then injecting them with streptozotocin to induce T2DM.Cognitive function was assessed using the Morris water maze experiment.The CBF changes were measured by 3D-ASL magnetic resonance imaging.VEGF expression was determined using immunofluorescence.RESULTS The escape latency time significantly reduced 15 wk after streptozotocin injection in the T2DM group.The total distance traveled was longer in the T2DM group;also,the platform was crossed fewer times.The percentage of distance in the target zone significantly decreased.CBF decreased in the bilateral hippocampus in the T2DM group.No difference was found between the right CBF value and the left CBF value in the T2DM group.The VEGF expression level in the hippocampus was lower in the T2DM group and correlated with the CBF value.The escape latency negatively correlated with the CBF value.The number of rats crossing the platform positively correlated with the CBF value.CONCLUSION Low CBF in the hippocampus and decreased VEGF expression might be crucial in DACD.CBF measured by 3D-ASL might serve as a noninvasive imaging biomarker for cognitive impairment associated with T2DM.展开更多
Cerebrovascular disease is a disease with high morbidity,disability and mortality rates,which seri-ously affects the daily life of patients and is a heavy burden on families and society.Arterial spin labeling(ASL)is a...Cerebrovascular disease is a disease with high morbidity,disability and mortality rates,which seri-ously affects the daily life of patients and is a heavy burden on families and society.Arterial spin labeling(ASL)is a magnetic resonance imaging(MRI)technology that uses the magnetic labeling of hydrogen atoms in arterial blood as tracers to noninvasively evaluate brain blood flow.ASL does not require injection of an exogenous contrast agent,and has the advantages of no radiation,simplicity and low cost.In cerebrovascular diseases,ASL can evaluate the collateral cerebrovascular circulation and abnormal perfusion of brain tissue,which can provide a reliable basis for early diagnosis and clinical decision-making.This study reviewed ASL and its application in the diagnosis,treatment and prognosis of cerebrovascular diseases.展开更多
Arterial spin labeling(ASL) is a magnetic resonance imaging technique for measuring tissue perfusion using a freely diffusible intrinsic tracer.As compared with other perfusion techniques,ASL offers several advantages...Arterial spin labeling(ASL) is a magnetic resonance imaging technique for measuring tissue perfusion using a freely diffusible intrinsic tracer.As compared with other perfusion techniques,ASL offers several advantages and is now available for routine clinical practice in many institutions.Its noninvasive nature and ability to quantitatively measure tissue perfusion make ASL ideal for research and clinical studies.Recent technical advances have increased its sensitivity and also extended its potential applications.This review focuses on some basic knowledge of ASL perfusion,emerging techniques and clinical applications in neuroimaging.展开更多
MULTIPLE sclerosis (MS) is a common inflammatory demyelinating disorder of central nervous system, and the disease burder could be well evaluated by conven-tional magnetic resonance imaging (MRI),1 including T2-we...MULTIPLE sclerosis (MS) is a common inflammatory demyelinating disorder of central nervous system, and the disease burder could be well evaluated by conven-tional magnetic resonance imaging (MRI),1 including T2-weighted, fluid-attenuatd inversion recovery, and postcontrast Tl-weighted sequences. 2 We investigated the perfusion state of MS plaques using brain perfusion imaging in a 12-year-old boy with MS.展开更多
文摘BACKGROUND Early thrombolytic therapy is crucial to treat acute cerebral infarction,especially since the onset of thrombolytic therapy takes 1-6 h.Therefore,early diagnosis and evaluation of cerebral infarction is important.AIM To investigate the diagnostic value of magnetic resonance multi-delay threedimensional arterial spin labeling(3DASL)and diffusion kurtosis imaging(DKI)in evaluating the perfusion and infarct area size in patients with acute cerebral ischemia.METHODS Eighty-four patients who experienced acute cerebral ischemia from March 2019 to February 2021 were included.All patients in the acute stage underwent magnetic resonance-based examination,and the data were processed by the system’s own software.The apparent diffusion coefficient(ADC),average diffusion coefficient(MD),axial diffusion(AD),radial diffusion(RD),average kurtosis(MK),radial kurtosis(fairly RK),axial kurtosis(AK),and perfusion parameters post-labeling delays(PLD)in the focal area and its corresponding area were compared.The correlation between the lesion area of cerebral infarction under MK and MD and T2-weighted imaging(T2WI)was analyzed.RESULTS The DKI parameters of focal and control areas in the study subjects were compared.The ADC,MD,AD,and RD values in the lesion area were significantly lower than those in the control area.The MK,RK,and AK values in the lesion area were significantly higher than those in the control area.The MK/MD value in the infarct lesions was used to determine the matching situation.MK/MD<5 mm was considered matching and MK/MD≥5 mm was considered mismatching.PLD1.5s and PLD2.5s perfusion parameters in the central,peripheral,and control areas of the infarct lesions in MK/MD-matched and-unmatched patients were not significantly different.PLD1.5s and PLD2.5s perfusion parameter values in the central area of the infarct lesions in MK/MD-matched and-unmatched patients were significantly lower than those in peripheral and control areas.The MK and MD maps showed a lesion area of 20.08±5.74 cm^(2) and 22.09±5.58 cm^(2),respectively.T2WI showed a lesion area of 19.76±5.02 cm^(2).There were no significant differences in the cerebral infarction lesion areas measured using the three methods.MK,MD,and T2WI showed a good correlation.CONCLUSION DKI parameters showed significant difference between the focal and control areas in patients with acute ischemic cerebral infarction.3DASL can effectively determine the changes in perfusion levels in the lesion area.There was a high correlation between the area of the infarct lesions diagnosed by DKI and T2WI.
基金Supported by The Endocrine Clinical Medical Center of Yunnan ProvinceNo.ZX20190202+2 种基金the Fund of the Diabetic Innovation Team in Yunnan Province,No.2019HC002the Special Joint Fund from Yunnan Provincial Department of Science and Technology and Kunming Medical University,Kunming,Yunnan,China,No.2018FE001(-267)the SKY Image Research Fund,China,No. Z-2014-07-2003-12。
文摘BACKGROUND Type 2 diabetes mellitus(T2DM) has been strongly associated with an increased risk of developing cognitive dysfunction and dementia.The mechanisms of diabetes-associated cognitive dysfunction(DACD) have not been fully elucidated to date.Some studies proved lower cerebral blood flow(CBF) in the hippocampus was associated with poor executive function and memory in T2DM.Increasing evidence showed that diabetes leads to abnormal vascular endothelial growth factor(VEGF) expression and CBF changes in humans and animal models.In this study,we hypothesized that DACD was correlated with CBF alteration as measured by three-dimensional(3D) arterial spin labeling(3D-ASL) and VEGF expression in the hippocampus.AIM To assess the correlation between CBF(measured by 3D-ASL and VEGF expression) and DACD in a rat model of T2DM.METHODS Forty Sprague-Dawley male rats were divided into control and T2DM groups.The T2DM group was established by feeding rats a high-fat diet and glucose to induce impaired glucose tolerance and then injecting them with streptozotocin to induce T2DM.Cognitive function was assessed using the Morris water maze experiment.The CBF changes were measured by 3D-ASL magnetic resonance imaging.VEGF expression was determined using immunofluorescence.RESULTS The escape latency time significantly reduced 15 wk after streptozotocin injection in the T2DM group.The total distance traveled was longer in the T2DM group;also,the platform was crossed fewer times.The percentage of distance in the target zone significantly decreased.CBF decreased in the bilateral hippocampus in the T2DM group.No difference was found between the right CBF value and the left CBF value in the T2DM group.The VEGF expression level in the hippocampus was lower in the T2DM group and correlated with the CBF value.The escape latency negatively correlated with the CBF value.The number of rats crossing the platform positively correlated with the CBF value.CONCLUSION Low CBF in the hippocampus and decreased VEGF expression might be crucial in DACD.CBF measured by 3D-ASL might serve as a noninvasive imaging biomarker for cognitive impairment associated with T2DM.
文摘Cerebrovascular disease is a disease with high morbidity,disability and mortality rates,which seri-ously affects the daily life of patients and is a heavy burden on families and society.Arterial spin labeling(ASL)is a magnetic resonance imaging(MRI)technology that uses the magnetic labeling of hydrogen atoms in arterial blood as tracers to noninvasively evaluate brain blood flow.ASL does not require injection of an exogenous contrast agent,and has the advantages of no radiation,simplicity and low cost.In cerebrovascular diseases,ASL can evaluate the collateral cerebrovascular circulation and abnormal perfusion of brain tissue,which can provide a reliable basis for early diagnosis and clinical decision-making.This study reviewed ASL and its application in the diagnosis,treatment and prognosis of cerebrovascular diseases.
文摘Arterial spin labeling(ASL) is a magnetic resonance imaging technique for measuring tissue perfusion using a freely diffusible intrinsic tracer.As compared with other perfusion techniques,ASL offers several advantages and is now available for routine clinical practice in many institutions.Its noninvasive nature and ability to quantitatively measure tissue perfusion make ASL ideal for research and clinical studies.Recent technical advances have increased its sensitivity and also extended its potential applications.This review focuses on some basic knowledge of ASL perfusion,emerging techniques and clinical applications in neuroimaging.
文摘MULTIPLE sclerosis (MS) is a common inflammatory demyelinating disorder of central nervous system, and the disease burder could be well evaluated by conven-tional magnetic resonance imaging (MRI),1 including T2-weighted, fluid-attenuatd inversion recovery, and postcontrast Tl-weighted sequences. 2 We investigated the perfusion state of MS plaques using brain perfusion imaging in a 12-year-old boy with MS.