期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multi-focus image fusion based on block matching in 3D transform domain 被引量:5
1
作者 YANG Dongsheng HU Shaohai +2 位作者 LIU Shuaiqi MA Xiaole SUN Yuchao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期415-428,共14页
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ... Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods. 展开更多
关键词 image fusion block matching 3d transform block-matching and 3d(bm3d) non-subsampled Shearlet transform(NSST)
下载PDF
Image Restoration Using Hybrid Features Improvement on Morphological Component Analysis
2
作者 Der-Chang Tseng Ru-Yin Wei +1 位作者 Ching-Ta Lu Ling-Ling Wang 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第4期371-381,共11页
Images are generally corrupted by impulse noise during acquisition and transmission.Noise deteriorates the quality of images.To remove corruption noise,we propose a hybrid approach to restoring a random noisecorrupted... Images are generally corrupted by impulse noise during acquisition and transmission.Noise deteriorates the quality of images.To remove corruption noise,we propose a hybrid approach to restoring a random noisecorrupted image,including a block matching 3D(BM3D)method,an adaptive non-local mean(ANLM)scheme,and the K-singular value decomposition(K-SVD)algorithm.In the proposed method,we employ the morphological component analysis(MCA)to decompose an image into the texture,structure,and edge parts.Then,the BM3D method,ANLM scheme,and K-SVD algorithm are utilized to eliminate noise in the texture,structure,and edge parts of the image,respectively.Experimental results show that the proposed approach can effectively remove interference random noise in different parts;meanwhile,the deteriorated image is able to be reconstructed well. 展开更多
关键词 Adaptive non-local mean(ANLM) block matching 3d(bm3d) image restoration morphological component analysis(MCA) singular value decomposition(SVd).
下载PDF
改进的Roberts图像边缘检测算法 被引量:54
3
作者 王方超 张旻 宫丽美 《探测与控制学报》 CSCD 北大核心 2016年第2期88-92,共5页
针对复杂背景下图像边缘检测中存在抗噪性能不强、边缘不连续等问题,提出了改进的Roberts边缘检测算法。该算法采用3×3邻域代替Roberts算法中2×2邻域来计算梯度幅值;并利用图像块之间相似性的三维块匹配的去噪模型,提高Robert... 针对复杂背景下图像边缘检测中存在抗噪性能不强、边缘不连续等问题,提出了改进的Roberts边缘检测算法。该算法采用3×3邻域代替Roberts算法中2×2邻域来计算梯度幅值;并利用图像块之间相似性的三维块匹配的去噪模型,提高Roberts算子的检测精度和抗噪性能;通过最佳阈值迭代方法代替人为指定阈值来获取最佳分割阈值,有效地提取图中目标轮廓。仿真实验结果表明,该算法PSNR达到33dB左右,比抗噪形态学边缘检测算法和一种改进的Roberts和灰色关联分析的边缘检测算法抗噪性能好,在抑制噪声干扰的同时,能保留边缘信息,较好提取目标的整体轮廓信息,为后续目标识别奠定基础。 展开更多
关键词 边缘检测 梯度幅值 三维块匹配 最佳阈值迭代分割
下载PDF
局部均值噪声估计的盲3维滤波降噪算法 被引量:16
4
作者 徐少平 张兴强 +2 位作者 姜尹楠 唐祎玲 江顺亮 《中国图象图形学报》 CSCD 北大核心 2017年第4期422-434,共13页
目的图像在获取和传输的过程中很容易受到噪声的干扰,图像降噪作为众多图像处理系统的预处理模块在过去数十年中得到了广泛的研究。在已提出的降噪算法中,往往采用加性高斯白噪声模型AWGN(additive white Gaussian noise)为噪声建模,噪... 目的图像在获取和传输的过程中很容易受到噪声的干扰,图像降噪作为众多图像处理系统的预处理模块在过去数十年中得到了广泛的研究。在已提出的降噪算法中,往往采用加性高斯白噪声模型AWGN(additive white Gaussian noise)为噪声建模,噪声水平(严重程度)由方差参数控制。经典的BM3D 3维滤波算法属于非盲降噪(non-blind denoising algorithm)算法,在实际使用中需要由人工评估图像噪声水平并设置参数,存在着噪声评估值随机性大而导致无法获得最佳降噪效果的问题。为此,提出了一种新的局部均值噪声估计(LME)算法并作为BM3D算法的前置预处理模块。方法本文专注于利用基于自然统计规律(NSS)的图像质量感知特征和局部均值估计技术构建图像噪声水平预测器,并通过它高效地获得噪声图像中准确的噪声水平值。关于自然场景统计方面的研究表明,无失真的自然场景图像在空域或者频率域上具有显著的统计规律,一旦受到噪声干扰会产生规律性的偏移,可以提取这些特征值作为反映图像质量好坏的图像质量感知特征。另外,局部均值估计因其简单而高效率的预测特性被采用。具体实现上,在具有广泛代表性且未受噪声干扰图像集合上添加不同噪声水平的高斯噪声构建失真图像集合,然后利用小波变换对这些失真图像进行不同尺度和不同方向的分解,再用广义高斯分布模型(GGD)提取子带滤波系数的统计信息构成描述图像失真程度的特征矢量,最后用每幅失真图像上所提取的特征矢量及对其所施加的高斯噪声水平值构成了失真特征矢量库。在降噪阶段,用相同的特征提取方法提取待降噪的图像的特征矢量并在失真特征矢量库中检索出与之类似的若干特征矢量及它们所对应的噪声水平值,然后用局部均值法估计出待降噪图像中高斯噪声大小作为经典BM3D算法的输入参数。结果改进后的BM3D算法转换为盲降噪算法,称为BM3D-LME(block-matching and 3D filtering based on local means estimation)算法。准确的噪声估计对于诸如图像降噪,图像超分辨率和图像分割等图像处理任务非常重要。已经验证了所提出噪声水平估计算法的准确性、鲁棒性和有效性。结论相对人工进行噪声估计,LME算法能够准确、快速地估算出任意待降噪图像中的噪声大小。配合BM3D算法使用后,有效提高了它的实际降噪效果并扩大它的应用范围。 展开更多
关键词 噪声评估 特征矢量提取 局部均值估计 bm3d(blockmatching and 3d filtering)算法 盲降噪
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部