The yarn architecture of 3-D braided composites products by the four-step 1×1 braiding technique has been studied by means of a control volume method in conjunction with experimental investigation and a numerical...The yarn architecture of 3-D braided composites products by the four-step 1×1 braiding technique has been studied by means of a control volume method in conjunction with experimental investigation and a numerical method, respectively. An ellipse assumption for the cross-section of yarn was proposed in this analysis method with considering the yarn size and yarn-packing factor. Two types of local unit cell structures were identified for 4-step braided composites by considering the nature of the braiding processes and by observing the sample cross-sections. The relationship between the braiding procedure and the properties for 3-D braided structural shapes was established. This method provides the basis for analyzing stiffness and strength of 3-D braided composites.展开更多
The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental mod...The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.展开更多
Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring wit...Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring without warning.A new methodology for the analysis of failure modes in composite materials by means of acoustic emission techniques has been developed.The occurrence of fiber-breakage during tensile loading tests has been observed by the acoustic emission technology.Using acoustic emission technology is investigated as a means of monitoring 3D braided composites structures,detecting damage,and predicting impending damage.Some of the findings of the research project were presented.展开更多
This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes...This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.展开更多
Three-dimensional( 3 D) fabric composite is a newly developed sandwich structure,consisting of two identical parallel fabric decks woven integrally and mechanically together by means of vertical woven fabrics. In this...Three-dimensional( 3 D) fabric composite is a newly developed sandwich structure,consisting of two identical parallel fabric decks woven integrally and mechanically together by means of vertical woven fabrics. In this paper,six types of 3 D fabric sandwich composites were developed in terms of compressive and flexural properties as a function of pile height( 10, 20 and30 mm) and pile distance( 16, 24 and 32 mm) in pile structures. The mechanical characteristics and the damage modes of the 3 D fabric sandwich composites under compressive and flexural load conditions were investigated. Besides,the influence of pile height and pile distance on the 3 D fabric sandwich composites mechanical properties was analyzed. The results showed that the compressive properties decreased with the increase of the pile height and the pile distance. Flexural properties increased with the increase of pile height, while decreased with the increase of pile distance.展开更多
With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we...With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we designed three-dimensional woven spacer fabrics(3DWSFs)and 3DWSCs with the weft V-shape to improve the compression performance of traditional 3DWSFs.The effects of weft binding structures,V-pile densities,and V-shaped angle were investigated in this paper.It is found that the compression resistance of 3DWSFs with the weft V-shape is improved compared to that with the weft I-shape,the fabric height recovery rate is as high as 95.7%,and the average elastic recovery rate is 59.39%.When the interlayer pile yarn density is the same,the weft V-shaped and weft I-shaped 3DWSCs have similar flatwise pressure and edgewise pressure performance.The compression properties of the composite improve as the density of the V-pile yarns increases.The flatwise compression load decreases as the V-shaped angle decreases.When the V-shaped angle is 28°and 42°,the latitudinal V-shaped 3DWSCs perform exceptionally well in terms of anti-compression cushioning.The V-shaped weft binding method offers a novel approach to structural design of 3DWSCs.展开更多
This paper describes a study of three-dimensional braids produced by a four-step 1 × 1 method. An analytical approach is employed in conjunction with experimental investigations to establish the relationship betw...This paper describes a study of three-dimensional braids produced by a four-step 1 × 1 method. An analytical approach is employed in conjunction with experimental investigations to establish the relationship between the braid structure and braiding parameters. Based on microscopic observations, we divide a three-dimensional braid structure into three representative regions, i.e., the interior, surface and corner, and treat the three regions, respectively. Three types of microstructural unit-cell models are then established. The surface characteristics and the relationship between the interior and surface unit-cells have been derived. Good agreement has been obtained between the calculated and measured values of fiber volume fraction of the braided composite samples.展开更多
The paper applies a mathematical model[1] for specular reflection to plain-knitted fabrics by using a three-dimensional analysis. Computer simulation of goniophotometric curves is generated based oa the model. Correct...The paper applies a mathematical model[1] for specular reflection to plain-knitted fabrics by using a three-dimensional analysis. Computer simulation of goniophotometric curves is generated based oa the model. Correction factors are introduced by taking into consideration of geometry of the instrument used. Comparison between the simulated and the measured curves of a straight monofilament yarn with various orientation angles is carried out and reasonable agreement has been obtained.展开更多
Micrometer NbC_x-C three-dimensional netted fibers were synthesized by thecarbothermal method under 0.1 MPa of N_2 ambient atmosphere at a relatively low temperature. Rawmaterials were commercial powders of Nb_2O_5 (9...Micrometer NbC_x-C three-dimensional netted fibers were synthesized by thecarbothermal method under 0.1 MPa of N_2 ambient atmosphere at a relatively low temperature. Rawmaterials were commercial powders of Nb_2O_5 (99.95 percent), reactive carbon (99.99 percent), NaCl(99.95 percent) and sucrose (99.94 percent). The relationship of the fabrication processing with thecomposition, crystal structure and morphology of fibers was investigated. The formation mechanismwas also proposed and discussed.展开更多
Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture ...Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.展开更多
To solve the volume expansion and poor electrical conductivity of germanium-based anode materials,Ge/rGO/CNTs nanocomposites with three-dimensional network structure are fabricated through the dispersion of polyethyle...To solve the volume expansion and poor electrical conductivity of germanium-based anode materials,Ge/rGO/CNTs nanocomposites with three-dimensional network structure are fabricated through the dispersion of polyethylene-polypropylene glycol(F127)and reduction of hydrogen.An interesting phenomenon is discovered that F127 can break GeO_(2)polycrystalline microparticles into 100 nm nanoparticles by only physical interaction,which promotes the uniform dispersion of GeO_(2)in a carbon network structure composed of graphene(rGO)and carbon nanotubes(CNTs).As evaluated as anode material of Lithium-ion batteries,Ge/rGO/CNTs nanocomposites exhibit excellent lithium storage performance.The initial specific capacity is high to 1549.7 mAh/g at 0.2 A/g,and the reversible capacity still retains972.4 mAh/g after 100 cycles.The improved lithium storage performance is attributed to that Ge nanoparticles can effectively slow down the volume expansion during charge and discharge processes,and threedimensional carbon networks can improve electrical conductivity and accelerate lithium-ion transfer of anode materials.展开更多
The braided river is a typical river pattern in nature, but there is a paucity of comprehensive data set describing the three-dimensional flow field in the braided river. A physical model experiment was used to study ...The braided river is a typical river pattern in nature, but there is a paucity of comprehensive data set describing the three-dimensional flow field in the braided river. A physical model experiment was used to study the flow characteristics in the typical braided river with a mid-bar between two anabranches. In the experiment, two kinds of mid-bar with the ratios of its length to maximal width of 3 and 5 were considered. Moreover, the mid-bar could be moved to adjust the width of two anabranches. The detailed measurements of velocity were conducted using an acoustic Doppler velocimeter over a grid defined throughout the whole braided river region, including the bifurcation, two anabranches and the confluence. In two kinds of mid-bar braided models, a separation zone was observed in the anabranch of the model in which the ratio of length to maximal width of mid-bar is 3, however the separation zone was not found in another model in which the ratio is 5. In addition, the opposite secondary cells were observed at the bend apex of anabranch in two models, and different longitudinal velocity distributions in the entrance region of anabranch account for this opposite flow structure. Finally, turbulent kinetic energy were shown and compared in different situations. The high turbulence occurs at the place with strong shear, especially at the boundary of the separation zone and the high velocity passing flow.展开更多
Weft knitted fancy fabrics are widely used in knitted garment design. Due to the complexity of the structures, their modeling and simulation needs to be solved in three-dimensional (3D) CAD developments. In this paper...Weft knitted fancy fabrics are widely used in knitted garment design. Due to the complexity of the structures, their modeling and simulation needs to be solved in three-dimensional (3D) CAD developments. In this paper, 3D loop geometrical models of weft knitted fancy structures, including tuck stitch, jacquard stitch, transfer stitch and fleecy stitch, were developed based on an improved model of plain loop, and their central axes as some 3D space curves were achieved by using Non-Uniform Rational B-Splines (NURBS). The 3D visual simulation programme was written in C++ programming language using OpenGL, which was a function library of 3D graphics. Some examples of weft knitted fancy fabrics were generated and practical application of 3D simulation was discussed.展开更多
For crystals, depressed cladding waveguides have advantages such as preservation of the spectroscopic as well as non-linear properties and the capability to guide both horizontal and vertical polarization modes, but f...For crystals, depressed cladding waveguides have advantages such as preservation of the spectroscopic as well as non-linear properties and the capability to guide both horizontal and vertical polarization modes, but fabrication is always quite time consuming. In addition, it is usually difficult to couple modes propagating in different depressed cladding waveguides through evanescent field overlap, so it is often required to dynamically reconfigure photonic waveguide devices using external fields for classical or quantum applications. Here, we experimentally demonstrate the single-scan femtosecond laser transverse writing of depressed cladding waveguides to form a 2 × 2 directional coupler inside lithium niobate crystal, which is integrated with two deeply embedded microelectrodes on both sides of the interaction region to reconfigure the coupling. By focal field engineering of the femtosecond laser, we specially generate a three-dimensional longitudinally oriented ring-shaped focal intensity profile composed of 16 discrete spots to simultaneously write the entire cladding region. The fabricated waveguides exhibit good single guided modes in two orthogonal polarizations at 1550 nm. By applying voltage to the deeply embedded microelectrodes fabricated with the femtosecond laser ablation followed by selective electroless plating, we successfully facilitate the light coupling from the input arm to the cross arm and thus actively tune the splitting ratio. These results open new important perspectives in the efficient fabrication of reconfigurable complex three-dimensional devices in crystals based on depressed cladding waveguides.展开更多
基于对二维圆形和三维二步法圆形编织工艺与编织运动规律的分析,探讨圆形截面编织结构的共同特点,建立圆形截面编织结构数学模型,模拟编织结构中单根股线中心线的轨迹及空间位置。在Visual Studio 2019平台上利用WebGL技术和三维图形引...基于对二维圆形和三维二步法圆形编织工艺与编织运动规律的分析,探讨圆形截面编织结构的共同特点,建立圆形截面编织结构数学模型,模拟编织结构中单根股线中心线的轨迹及空间位置。在Visual Studio 2019平台上利用WebGL技术和三维图形引擎库Three.js,快速有效地呈现三维股线编织结构,大幅提高三维仿真效率。结果显示:基于广义玫瑰线数学模型对圆形截面编织结构进行三维仿真切实可行且效果良好,能较好地反映编织结构股线相互穿插的交织规律和外观特征。研究可为产业用编织绳索的建模与结构可视化奠定基础。展开更多
基金Aeronautical Science Foundation of China ( 99B2 3 0 0 1)
文摘The yarn architecture of 3-D braided composites products by the four-step 1×1 braiding technique has been studied by means of a control volume method in conjunction with experimental investigation and a numerical method, respectively. An ellipse assumption for the cross-section of yarn was proposed in this analysis method with considering the yarn size and yarn-packing factor. Two types of local unit cell structures were identified for 4-step braided composites by considering the nature of the braiding processes and by observing the sample cross-sections. The relationship between the braiding procedure and the properties for 3-D braided structural shapes was established. This method provides the basis for analyzing stiffness and strength of 3-D braided composites.
基金Tianjin Municipal Science and Technologies Commission,China(Nos.10SYSYJC27800,1ZCKFSF00500)
文摘The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.
基金Tianjin Natural Science Sustentation Fund Project,China(No.043600711)Ministry of Education Sustentation Fund Project,China(No.03008)
文摘Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring without warning.A new methodology for the analysis of failure modes in composite materials by means of acoustic emission techniques has been developed.The occurrence of fiber-breakage during tensile loading tests has been observed by the acoustic emission technology.Using acoustic emission technology is investigated as a means of monitoring 3D braided composites structures,detecting damage,and predicting impending damage.Some of the findings of the research project were presented.
基金National Natural Science Foundation of China (50275139) Natural Science Foundation of Zhejiang (01388-G)
文摘This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.
基金National Key R&D Program of China(Nos.2016YFB0303104,2018YFC0810306)Jiangsu Overseas Visiting Scholar Program for University Prominent Younge Middle-aged Teachers and PresidentsSix Talent Peaks Project in Jiangsu Province,China(No.XCL-061)
文摘Three-dimensional( 3 D) fabric composite is a newly developed sandwich structure,consisting of two identical parallel fabric decks woven integrally and mechanically together by means of vertical woven fabrics. In this paper,six types of 3 D fabric sandwich composites were developed in terms of compressive and flexural properties as a function of pile height( 10, 20 and30 mm) and pile distance( 16, 24 and 32 mm) in pile structures. The mechanical characteristics and the damage modes of the 3 D fabric sandwich composites under compressive and flexural load conditions were investigated. Besides,the influence of pile height and pile distance on the 3 D fabric sandwich composites mechanical properties was analyzed. The results showed that the compressive properties decreased with the increase of the pile height and the pile distance. Flexural properties increased with the increase of pile height, while decreased with the increase of pile distance.
基金Fundamental Research Funds for the Central Universities,China(Nos.2232022D-11 and 22D128102/007)Jiangsu Transformation and Upgrading Funding Program for Industrial and Information Industry,ChinaShanghai Natural Science Foundation of Shanghai Municipal Science and Technology Commission,China(No.20ZR1401600)。
文摘With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we designed three-dimensional woven spacer fabrics(3DWSFs)and 3DWSCs with the weft V-shape to improve the compression performance of traditional 3DWSFs.The effects of weft binding structures,V-pile densities,and V-shaped angle were investigated in this paper.It is found that the compression resistance of 3DWSFs with the weft V-shape is improved compared to that with the weft I-shape,the fabric height recovery rate is as high as 95.7%,and the average elastic recovery rate is 59.39%.When the interlayer pile yarn density is the same,the weft V-shaped and weft I-shaped 3DWSCs have similar flatwise pressure and edgewise pressure performance.The compression properties of the composite improve as the density of the V-pile yarns increases.The flatwise compression load decreases as the V-shaped angle decreases.When the V-shaped angle is 28°and 42°,the latitudinal V-shaped 3DWSCs perform exceptionally well in terms of anti-compression cushioning.The V-shaped weft binding method offers a novel approach to structural design of 3DWSCs.
文摘This paper describes a study of three-dimensional braids produced by a four-step 1 × 1 method. An analytical approach is employed in conjunction with experimental investigations to establish the relationship between the braid structure and braiding parameters. Based on microscopic observations, we divide a three-dimensional braid structure into three representative regions, i.e., the interior, surface and corner, and treat the three regions, respectively. Three types of microstructural unit-cell models are then established. The surface characteristics and the relationship between the interior and surface unit-cells have been derived. Good agreement has been obtained between the calculated and measured values of fiber volume fraction of the braided composite samples.
文摘The paper applies a mathematical model[1] for specular reflection to plain-knitted fabrics by using a three-dimensional analysis. Computer simulation of goniophotometric curves is generated based oa the model. Correction factors are introduced by taking into consideration of geometry of the instrument used. Comparison between the simulated and the measured curves of a straight monofilament yarn with various orientation angles is carried out and reasonable agreement has been obtained.
基金This work was financially supported by the National Nature Science Foundation of China(No.59425007, No.59432033).
文摘Micrometer NbC_x-C three-dimensional netted fibers were synthesized by thecarbothermal method under 0.1 MPa of N_2 ambient atmosphere at a relatively low temperature. Rawmaterials were commercial powders of Nb_2O_5 (99.95 percent), reactive carbon (99.99 percent), NaCl(99.95 percent) and sucrose (99.94 percent). The relationship of the fabrication processing with thecomposition, crystal structure and morphology of fibers was investigated. The formation mechanismwas also proposed and discussed.
基金This work was supported by grantsfromThe Int .Cooperation Projectfor National &Abroad Lab.of the National Natural Sciences Foundation ofChina(2002008) and The Science &Technology Foundation of Liaoningprovince (20022140)
基金supported by the National Science and Technology Major Project(Grant No.2017ZX05008-006004-002)the National Natural Science Foundation of China(Grant Nos.41502126 and 41902155)the Open Foundation of Top Disciplines in Yangtze University(Grant No.2019KFJJ0818022)。
文摘Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.
基金financially supported by National Natural Science Foundation of China(Nos.22379056,52102100)Industry foresight and common key technology research in Carbon Peak and Carbon Neutrality Special Project from Zhenjiang city(No.CG2023003)Research and Practice Innovation Plan of Postgraduate Training Innovation Project in Jiangsu Province(No.SJCX23_2164)。
文摘To solve the volume expansion and poor electrical conductivity of germanium-based anode materials,Ge/rGO/CNTs nanocomposites with three-dimensional network structure are fabricated through the dispersion of polyethylene-polypropylene glycol(F127)and reduction of hydrogen.An interesting phenomenon is discovered that F127 can break GeO_(2)polycrystalline microparticles into 100 nm nanoparticles by only physical interaction,which promotes the uniform dispersion of GeO_(2)in a carbon network structure composed of graphene(rGO)and carbon nanotubes(CNTs).As evaluated as anode material of Lithium-ion batteries,Ge/rGO/CNTs nanocomposites exhibit excellent lithium storage performance.The initial specific capacity is high to 1549.7 mAh/g at 0.2 A/g,and the reversible capacity still retains972.4 mAh/g after 100 cycles.The improved lithium storage performance is attributed to that Ge nanoparticles can effectively slow down the volume expansion during charge and discharge processes,and threedimensional carbon networks can improve electrical conductivity and accelerate lithium-ion transfer of anode materials.
基金Project supported by the National Natural Science Foundation of China(Grant No.50679019)the National Basic Research Program of China(973Program,Grant No.2008CB418202)+1 种基金the project of"Six Talent Peak"of Jiangsu Province(Grant No.08-C)the Social Technology Development Foundation of Jiangsu Province(Grant No.BS2006095).
文摘The braided river is a typical river pattern in nature, but there is a paucity of comprehensive data set describing the three-dimensional flow field in the braided river. A physical model experiment was used to study the flow characteristics in the typical braided river with a mid-bar between two anabranches. In the experiment, two kinds of mid-bar with the ratios of its length to maximal width of 3 and 5 were considered. Moreover, the mid-bar could be moved to adjust the width of two anabranches. The detailed measurements of velocity were conducted using an acoustic Doppler velocimeter over a grid defined throughout the whole braided river region, including the bifurcation, two anabranches and the confluence. In two kinds of mid-bar braided models, a separation zone was observed in the anabranch of the model in which the ratio of length to maximal width of mid-bar is 3, however the separation zone was not found in another model in which the ratio is 5. In addition, the opposite secondary cells were observed at the bend apex of anabranch in two models, and different longitudinal velocity distributions in the entrance region of anabranch account for this opposite flow structure. Finally, turbulent kinetic energy were shown and compared in different situations. The high turbulence occurs at the place with strong shear, especially at the boundary of the separation zone and the high velocity passing flow.
基金Natural Science Foundation of Tianjin,China( No. 11JCYBJC26400) Tianjin High School Scientific and Technology Fund Planning Project,China( No. 20100310)
文摘Weft knitted fancy fabrics are widely used in knitted garment design. Due to the complexity of the structures, their modeling and simulation needs to be solved in three-dimensional (3D) CAD developments. In this paper, 3D loop geometrical models of weft knitted fancy structures, including tuck stitch, jacquard stitch, transfer stitch and fleecy stitch, were developed based on an improved model of plain loop, and their central axes as some 3D space curves were achieved by using Non-Uniform Rational B-Splines (NURBS). The 3D visual simulation programme was written in C++ programming language using OpenGL, which was a function library of 3D graphics. Some examples of weft knitted fancy fabrics were generated and practical application of 3D simulation was discussed.
基金National Key R&D Program of China(2016YFA0301302,2018YFB1107205)National Natural Science Foundation of China(NSFC)(11474010,11627803,61590933)
文摘For crystals, depressed cladding waveguides have advantages such as preservation of the spectroscopic as well as non-linear properties and the capability to guide both horizontal and vertical polarization modes, but fabrication is always quite time consuming. In addition, it is usually difficult to couple modes propagating in different depressed cladding waveguides through evanescent field overlap, so it is often required to dynamically reconfigure photonic waveguide devices using external fields for classical or quantum applications. Here, we experimentally demonstrate the single-scan femtosecond laser transverse writing of depressed cladding waveguides to form a 2 × 2 directional coupler inside lithium niobate crystal, which is integrated with two deeply embedded microelectrodes on both sides of the interaction region to reconfigure the coupling. By focal field engineering of the femtosecond laser, we specially generate a three-dimensional longitudinally oriented ring-shaped focal intensity profile composed of 16 discrete spots to simultaneously write the entire cladding region. The fabricated waveguides exhibit good single guided modes in two orthogonal polarizations at 1550 nm. By applying voltage to the deeply embedded microelectrodes fabricated with the femtosecond laser ablation followed by selective electroless plating, we successfully facilitate the light coupling from the input arm to the cross arm and thus actively tune the splitting ratio. These results open new important perspectives in the efficient fabrication of reconfigurable complex three-dimensional devices in crystals based on depressed cladding waveguides.
文摘基于对二维圆形和三维二步法圆形编织工艺与编织运动规律的分析,探讨圆形截面编织结构的共同特点,建立圆形截面编织结构数学模型,模拟编织结构中单根股线中心线的轨迹及空间位置。在Visual Studio 2019平台上利用WebGL技术和三维图形引擎库Three.js,快速有效地呈现三维股线编织结构,大幅提高三维仿真效率。结果显示:基于广义玫瑰线数学模型对圆形截面编织结构进行三维仿真切实可行且效果良好,能较好地反映编织结构股线相互穿插的交织规律和外观特征。研究可为产业用编织绳索的建模与结构可视化奠定基础。