The semidiagnostic and prognostic models are used to compute the current in the Taiwan Strait with wind and hydrographic data collected during August, 1984 and September 1 ~ 6, 1988. This calculation can be divided in...The semidiagnostic and prognostic models are used to compute the current in the Taiwan Strait with wind and hydrographic data collected during August, 1984 and September 1 ~ 6, 1988. This calculation can be divided into two stages, i. e. (1 ) the adjustable stage; (2) prognostic calculation. The computed result shows tha the density and velocity fields etc. have been adjusted when t = 2. 5 d, namely the solution of semidignostic calculation is obtained,and the quasi-steady state solution have been reached after about 40 d. Comparing the results of diagncotic calculation with those of semidiagnortic and prognostic calculations indicates that they agree qualitatively. For example, they all have the following common features: (1 ) there is a persistent northward fiow with a volume transport of 0. 8 × 10 6 m3/s through the Taiwan Strait in summer; (2 ) the current near the western coas of Taiwan is stronger than that in other regiona; (3) the upweiling occurs near the Fujian coast and so on. However, there is a quantitative difference between them as follows. For example, the horizotal velocity near the westem cot of Taiwan and the upwelling speed near the Fujian aret both are underestimaed in the diagnestic calculation, because the data used in which is smoothed, and they both are intensified in the solutions of semidiagnostic and prognostic calculations. For example, the maximum velocity near the western coast of Taiwan at t = 0 d (diagnostic), 2. 5 d (semidiagnostic) and 300 d (prognostic) is 59.1, 62. 1 and 62. 0 cm/s, respectively. From the above comparison we see it is quite necessary that a semidiagnostic model be used to compute the currents when the data have been smoothed.展开更多
On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian res...On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.展开更多
The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is m...The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data.展开更多
The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is m...The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data.展开更多
The duration of a bound electron tunneling through the barrier formed by atomic potential and electrostatic field is calculated by the Bohmian trajectories scheme. The time of the tunneling ionization decreases with t...The duration of a bound electron tunneling through the barrier formed by atomic potential and electrostatic field is calculated by the Bohmian trajectories scheme. The time of the tunneling ionization decreases with the increase of the amplitude of the electrostatic field. By using the information about the position, velocity and force of the Bohmian trajectories, the dynamical process of tunneling through the barrier is investigated.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
A semi-implicit and Eulerian - Lagrangian finite difference method for three-dimensionalshallow flow has been extended to a more complete system of equations incorporating second-moment turbulence closure model and tr...A semi-implicit and Eulerian - Lagrangian finite difference method for three-dimensionalshallow flow has been extended to a more complete system of equations incorporating second-moment turbulence closure model and transport equations of salinity and temperature. The simulation for flooding and drying of mudflats has been improved. The model is applied to Xiamen waters. Based on extensive survey data, water level elevation, temperature and salinity field along the eastern open boundary and at the Jiulong River inlets and runoffs are analyzed, specified and calibrated. The computed results show good agreement with the measured data, reproduce flooding, emergence of large and complex mudflat region.展开更多
Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positio...Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.展开更多
In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination...In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.展开更多
Three-dimensional(3D) single-layer microcoils have always been a key element for electromagnetic systems;but they lack an easy and accurate method to calculate the inductance value for their complex 3D micro-structure...Three-dimensional(3D) single-layer microcoils have always been a key element for electromagnetic systems;but they lack an easy and accurate method to calculate the inductance value for their complex 3D micro-structures. This paper employed a curve-fitting process to obtain the associated equation for the inductance value and geometric parameters based on the simulation results. The correction factors regarding helical pitch and wire diameter were reviewed,which are used for compensation in the Nagaoka formula. The simulation process numerically simulated the performance of the 3D microcoils using a FEM electro-magnetic-coupled analysis method. Comparison of the simulated inductance value and the Nagaoka formula was undertaken,which shows that the helical pitch and wire diameter contribute a main role in the calculation error. The derived formula was expressed in a concise form to precisely calculate the inductance value of 3D microsolenoids with single-layer coils.展开更多
The requirement of the fast three-dimensional radiation field calculation is raised during the decommissioning of large-scale nuclear installations. The most often used methods, such as the Monte Carlo and the discret...The requirement of the fast three-dimensional radiation field calculation is raised during the decommissioning of large-scale nuclear installations. The most often used methods, such as the Monte Carlo and the discrete ordinates methods, have shortcomings in their simulations of such problems. The coupled Monte Carlo–point kernel computational scheme is developed to meet the requirement. The facility is separated into the source region and the bulk shielding region, with a common interface. The transport within the source region is simulated using the Monte Carlo method, which is by nature good at treating complex geometries. The radiation field in the bulk shielding region is treated by the point kernel approach to avoid the extremely expensive computation for deep penetration problems. The flow rate through the interface,which is given by the Monte Carlo simulation, is considered as the equivalent surface source for the point kernel calculation. Test calculations from simplified typical waste storage facilities have been performed to validate the coupled scheme by comparing them with the results conducted by the Monte Carlo method directly. The good agreement of the results, as well as the significant saving in computing time, indicates that the coupled method is suitable for the fast three-dimensional radiation field calculation.展开更多
Three-dimensional elasticity solutions for static bending of thick functionally graded plates are presented using a hybrid semi-analytical approach-the state-space based differential quadrature method (SSDQM). The p...Three-dimensional elasticity solutions for static bending of thick functionally graded plates are presented using a hybrid semi-analytical approach-the state-space based differential quadrature method (SSDQM). The plate is generally supported at four edges for which the two-way differential quadrature method is used to solve the in-plane variations of the stress and displacement fields numerically. An approximate laminate model (ALM) is exploited to reduce the inhomogeneous plate into a multi-layered laminate, thus applying the state space method to solve analytically in the thickness direction. Both the convergence properties of SSDQM and ALM are examined. The SSDQM is validated by comparing the numerical results with the exact solutions reported in the literature. As an example, the Mori-Tanaka model is used to predict the effective bulk and shear moduli. Effects of gradient index and aspect ratios on the bending behavior of functionally graded thick plates are investigated.展开更多
This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elemen...This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elements of a finite size for which mass, energy and momentum conservation laws are written in the integral form, assuming linear distribution of the parameters along the length. As a result, the calculation is reduced to finding the roots of a quadratic algebraic equation, thus providing an alternative to numerical methods based on differential equations. The advantage of this method is its high tolerance to coarse discretization of the calculation area as well as its good applicability for transonic flow calculations.展开更多
An orthotropic functionally graded piezoelectric rectangular plate with arbitrarily distributed material properties was studied, which is simply supported and grounded(electrically) on its four lateral edges. The st...An orthotropic functionally graded piezoelectric rectangular plate with arbitrarily distributed material properties was studied, which is simply supported and grounded(electrically) on its four lateral edges. The state equations of the functionally graded piezoelectric material were obtained using the state-space approach, and a Peano-Baker series solution was obtained for the coupled electroelastic fi elds of the functionally graded piezoelectric plate subjected to mechanical and electric loading on its upper and lower surfaces. The influence of different distributions of material properties on the structural response of the plate was studied using the obtained solutions.展开更多
Volume parameter is the basic content of a spatial body object morphology analysis.However,the challenge lies in the volume calculation of irregular objects.The point cloud slicing method proposed in this study effect...Volume parameter is the basic content of a spatial body object morphology analysis.However,the challenge lies in the volume calculation of irregular objects.The point cloud slicing method proposed in this study effectively works in calculating the volume of the point cloud of the spatial object obtained through three-dimensional laser scanning(3DLS).In this method,a uniformly spaced sequent slicing process is first conducted in a specific direction on the point cloud of the spatial object obtained through 3DLS.A series of discrete point cloud slices corresponding to the point cloud bodies are then obtained.Subsequently,the outline boundary polygon of the point cloud slicing is searched one by one in accordance with the slicing sequence and areas of the polygon.The point cloud slice is also calculated.Finally,the individual point cloud section volume is calculated through the slicing areas and the adjacent slicing gap.Thus,the total volume of the scanned spatial object can be calculated by summing up the individual volumes.According to the results and analysis of the calculated examples,the slice-based volume-calculating method for the point cloud of irregular objects obtained through 3DLS is correct,concise in process,reliable in results,efficient in calculation methods,and controllable on accuracy.This method comes as a good solution to the volume calculation of irregular objects.展开更多
The modified normal form approach presented by ZHANG Wei-yi, K Huseyin and CHEN Yu-shu is further extended and a different procedure is introduced which lends itself readily to symbolic calculations, like MAPLE. This ...The modified normal form approach presented by ZHANG Wei-yi, K Huseyin and CHEN Yu-shu is further extended and a different procedure is introduced which lends itself readily to symbolic calculations, like MAPLE. This provides a number of significant advantages over the previous approach, and facilitates the associated calculations. To illustrate the new approach, three examples are presented.展开更多
We feature the stationary solutions of the 3D complex cubic-quintic Ginzburg-Landau equation (CGLE). Our approach is based on collective variables approach which helps to obtain a system of variational equations, givi...We feature the stationary solutions of the 3D complex cubic-quintic Ginzburg-Landau equation (CGLE). Our approach is based on collective variables approach which helps to obtain a system of variational equations, giving the evolution of the light pulses parameters as a function of the propagation distance. The collective variables approach permits us to obtain, efficiently, a global mapping of the 3D stationary dissipative solitons. In addition it allows describing the influence of the parameters of the equation on the various physical parameters of the pulse and their dynamics. Thus it helps to show the impact of dispersion and nonlinear gain on the stationary dynamic.展开更多
In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dim...In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dimensionless ratios between the quanta of the vibrational energy and products of the actual temperature multiplied by the Boltzmann constant. It became evident that position of a local maximum obtained for the Planck’s average energy of a vibration mode and position of a local maximum of entropy are the same. In the next step the Haken’s time-dependent perturbation approach to the pair of quantum non-degenerate Schr<span style="white-space:nowrap;">?</span>dinger eigenstates of energy is re-examined. An averaging process done on the time variable leads to a very simple formula for the coefficients entering the perturbation terms.展开更多
文摘The semidiagnostic and prognostic models are used to compute the current in the Taiwan Strait with wind and hydrographic data collected during August, 1984 and September 1 ~ 6, 1988. This calculation can be divided into two stages, i. e. (1 ) the adjustable stage; (2) prognostic calculation. The computed result shows tha the density and velocity fields etc. have been adjusted when t = 2. 5 d, namely the solution of semidignostic calculation is obtained,and the quasi-steady state solution have been reached after about 40 d. Comparing the results of diagncotic calculation with those of semidiagnortic and prognostic calculations indicates that they agree qualitatively. For example, they all have the following common features: (1 ) there is a persistent northward fiow with a volume transport of 0. 8 × 10 6 m3/s through the Taiwan Strait in summer; (2 ) the current near the western coas of Taiwan is stronger than that in other regiona; (3) the upweiling occurs near the Fujian coast and so on. However, there is a quantitative difference between them as follows. For example, the horizotal velocity near the westem cot of Taiwan and the upwelling speed near the Fujian aret both are underestimaed in the diagnestic calculation, because the data used in which is smoothed, and they both are intensified in the solutions of semidiagnostic and prognostic calculations. For example, the maximum velocity near the western coast of Taiwan at t = 0 d (diagnostic), 2. 5 d (semidiagnostic) and 300 d (prognostic) is 59.1, 62. 1 and 62. 0 cm/s, respectively. From the above comparison we see it is quite necessary that a semidiagnostic model be used to compute the currents when the data have been smoothed.
基金Project supported by the National Natural Science Foundation of China
文摘On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.
基金Supported by National Natural Science Foundation of China(No.50 0 72 0 1 5 and No.5980 1 0 0 6) and Tianjin Youth Foundation o
文摘The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data.
基金Supported by National Natural Science Foundation of China(No.50 0 72 0 1 5 and No.5980 1 0 0 6) and Tianjin Youth Foundation o
文摘The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922200the National Natural Science Foundation of China under Grant Nos 11274141,11304116,11274001 and 11247024the Jilin Provincial Research Foundation for Basic Research under Grant No 20140101168JC
文摘The duration of a bound electron tunneling through the barrier formed by atomic potential and electrostatic field is calculated by the Bohmian trajectories scheme. The time of the tunneling ionization decreases with the increase of the amplitude of the electrostatic field. By using the information about the position, velocity and force of the Bohmian trajectories, the dynamical process of tunneling through the barrier is investigated.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
文摘A semi-implicit and Eulerian - Lagrangian finite difference method for three-dimensionalshallow flow has been extended to a more complete system of equations incorporating second-moment turbulence closure model and transport equations of salinity and temperature. The simulation for flooding and drying of mudflats has been improved. The model is applied to Xiamen waters. Based on extensive survey data, water level elevation, temperature and salinity field along the eastern open boundary and at the Jiulong River inlets and runoffs are analyzed, specified and calibrated. The computed results show good agreement with the measured data, reproduce flooding, emergence of large and complex mudflat region.
基金supported by the National Natural Science Foundation of China(Grant No.51379109)
文摘Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.
基金Project(2017YFC0404802)supported by the National Key R&D Program of ChinaProjects(U1965206,51979143)supported by the National Natural Science Foundation of China。
文摘In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.
基金supported by the National Science Foundation of China under the Grant No.61176113 and 51335008the Special-funded program on national key scientific instruments and equipment development of China under the Grant No.2012YQ12004706the Program for Changjiang Scholars and Innovative Research Team in University(IRT1033)。
文摘Three-dimensional(3D) single-layer microcoils have always been a key element for electromagnetic systems;but they lack an easy and accurate method to calculate the inductance value for their complex 3D micro-structures. This paper employed a curve-fitting process to obtain the associated equation for the inductance value and geometric parameters based on the simulation results. The correction factors regarding helical pitch and wire diameter were reviewed,which are used for compensation in the Nagaoka formula. The simulation process numerically simulated the performance of the 3D microcoils using a FEM electro-magnetic-coupled analysis method. Comparison of the simulated inductance value and the Nagaoka formula was undertaken,which shows that the helical pitch and wire diameter contribute a main role in the calculation error. The derived formula was expressed in a concise form to precisely calculate the inductance value of 3D microsolenoids with single-layer coils.
基金supported by the National Natural Science Foundation of China(No.11405277)
文摘The requirement of the fast three-dimensional radiation field calculation is raised during the decommissioning of large-scale nuclear installations. The most often used methods, such as the Monte Carlo and the discrete ordinates methods, have shortcomings in their simulations of such problems. The coupled Monte Carlo–point kernel computational scheme is developed to meet the requirement. The facility is separated into the source region and the bulk shielding region, with a common interface. The transport within the source region is simulated using the Monte Carlo method, which is by nature good at treating complex geometries. The radiation field in the bulk shielding region is treated by the point kernel approach to avoid the extremely expensive computation for deep penetration problems. The flow rate through the interface,which is given by the Monte Carlo simulation, is considered as the equivalent surface source for the point kernel calculation. Test calculations from simplified typical waste storage facilities have been performed to validate the coupled scheme by comparing them with the results conducted by the Monte Carlo method directly. The good agreement of the results, as well as the significant saving in computing time, indicates that the coupled method is suitable for the fast three-dimensional radiation field calculation.
基金Project supported by the National Natural Science Foundation of China(Nos.51108412,11472244,and 11202186)the National Basic Research Program of China(973 Program)(No.2013CB035901)+1 种基金the Fundamental Research Funds for the Central Universities(No.2014QNA4017)the Zhejiang Provincial Natural Science Foundation of China(No.LR13A020001)
文摘Three-dimensional elasticity solutions for static bending of thick functionally graded plates are presented using a hybrid semi-analytical approach-the state-space based differential quadrature method (SSDQM). The plate is generally supported at four edges for which the two-way differential quadrature method is used to solve the in-plane variations of the stress and displacement fields numerically. An approximate laminate model (ALM) is exploited to reduce the inhomogeneous plate into a multi-layered laminate, thus applying the state space method to solve analytically in the thickness direction. Both the convergence properties of SSDQM and ALM are examined. The SSDQM is validated by comparing the numerical results with the exact solutions reported in the literature. As an example, the Mori-Tanaka model is used to predict the effective bulk and shear moduli. Effects of gradient index and aspect ratios on the bending behavior of functionally graded thick plates are investigated.
文摘This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elements of a finite size for which mass, energy and momentum conservation laws are written in the integral form, assuming linear distribution of the parameters along the length. As a result, the calculation is reduced to finding the roots of a quadratic algebraic equation, thus providing an alternative to numerical methods based on differential equations. The advantage of this method is its high tolerance to coarse discretization of the calculation area as well as its good applicability for transonic flow calculations.
基金Funded by the National Natural Science Foundation of China(Nos.11102136 and 41362016)the Open Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety(No.2013ZDK09)
文摘An orthotropic functionally graded piezoelectric rectangular plate with arbitrarily distributed material properties was studied, which is simply supported and grounded(electrically) on its four lateral edges. The state equations of the functionally graded piezoelectric material were obtained using the state-space approach, and a Peano-Baker series solution was obtained for the coupled electroelastic fi elds of the functionally graded piezoelectric plate subjected to mechanical and electric loading on its upper and lower surfaces. The influence of different distributions of material properties on the structural response of the plate was studied using the obtained solutions.
文摘Volume parameter is the basic content of a spatial body object morphology analysis.However,the challenge lies in the volume calculation of irregular objects.The point cloud slicing method proposed in this study effectively works in calculating the volume of the point cloud of the spatial object obtained through three-dimensional laser scanning(3DLS).In this method,a uniformly spaced sequent slicing process is first conducted in a specific direction on the point cloud of the spatial object obtained through 3DLS.A series of discrete point cloud slices corresponding to the point cloud bodies are then obtained.Subsequently,the outline boundary polygon of the point cloud slicing is searched one by one in accordance with the slicing sequence and areas of the polygon.The point cloud slice is also calculated.Finally,the individual point cloud section volume is calculated through the slicing areas and the adjacent slicing gap.Thus,the total volume of the scanned spatial object can be calculated by summing up the individual volumes.According to the results and analysis of the calculated examples,the slice-based volume-calculating method for the point cloud of irregular objects obtained through 3DLS is correct,concise in process,reliable in results,efficient in calculation methods,and controllable on accuracy.This method comes as a good solution to the volume calculation of irregular objects.
文摘The modified normal form approach presented by ZHANG Wei-yi, K Huseyin and CHEN Yu-shu is further extended and a different procedure is introduced which lends itself readily to symbolic calculations, like MAPLE. This provides a number of significant advantages over the previous approach, and facilitates the associated calculations. To illustrate the new approach, three examples are presented.
文摘We feature the stationary solutions of the 3D complex cubic-quintic Ginzburg-Landau equation (CGLE). Our approach is based on collective variables approach which helps to obtain a system of variational equations, giving the evolution of the light pulses parameters as a function of the propagation distance. The collective variables approach permits us to obtain, efficiently, a global mapping of the 3D stationary dissipative solitons. In addition it allows describing the influence of the parameters of the equation on the various physical parameters of the pulse and their dynamics. Thus it helps to show the impact of dispersion and nonlinear gain on the stationary dynamic.
文摘In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dimensionless ratios between the quanta of the vibrational energy and products of the actual temperature multiplied by the Boltzmann constant. It became evident that position of a local maximum obtained for the Planck’s average energy of a vibration mode and position of a local maximum of entropy are the same. In the next step the Haken’s time-dependent perturbation approach to the pair of quantum non-degenerate Schr<span style="white-space:nowrap;">?</span>dinger eigenstates of energy is re-examined. An averaging process done on the time variable leads to a very simple formula for the coefficients entering the perturbation terms.