期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
1
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning convolutional neural networks (CNN) Seismic Fault Identification U-Net 3D Model Geological Exploration
下载PDF
Non-Intrusive Load Identification Model Based on 3D Spatial Feature and Convolutional Neural Network 被引量:1
2
作者 Jiangyong Liu Ning Liu +3 位作者 Huina Song Ximeng Liu Xingen Sun Dake Zhang 《Energy and Power Engineering》 2021年第4期30-40,共11页
<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I t... <div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div> 展开更多
关键词 Non-Intrusive Load Identification Binary V-I Trajectory Feature three-dimensional Feature convolutional neural network Deep Learning
下载PDF
Reconstructing the 3D digital core with a fully convolutional neural network
3
作者 Li Qiong Chen Zheng +4 位作者 He Jian-Jun Hao Si-Yu Wang Rui Yang Hao-Tao Sun Hua-Jun 《Applied Geophysics》 SCIE CSCD 2020年第3期401-410,共10页
In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for... In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for a fully convolutional neural networkmodel. This model is used to reconstruct the three-dimensional (3D) digital core of Bereasandstone based on a small number of CT images. The Hamming distance together with theMinkowski functions for porosity, average volume specifi c surface area, average curvature,and connectivity of both the real core and the digital reconstruction are used to evaluate theaccuracy of the proposed method. The results show that the reconstruction achieved relativeerrors of 6.26%, 1.40%, 6.06%, and 4.91% for the four Minkowski functions and a Hammingdistance of 0.04479. This demonstrates that the proposed method can not only reconstructthe physical properties of real sandstone but can also restore the real characteristics of poredistribution in sandstone, is the ability to which is a new way to characterize the internalmicrostructure of rocks. 展开更多
关键词 Fully convolutional neural network 3D digital core numerical simulation training set
下载PDF
An improved micro-expression recognition algorithm of 3D convolutional neural network
4
作者 WU Jin SHI Qianwen +2 位作者 XI Meng WANG Lei ZENG Huadie 《High Technology Letters》 EI CAS 2022年第1期63-71,共9页
The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dim... The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dimensional convolutional neural network(3D-CNN),which can extract two-di-mensional features in spatial domain and one-dimensional features in time domain,simultaneously.The network structure design is based on the deep learning framework Keras,and the discarding method and batch normalization(BN)algorithm are effectively combined with three-dimensional vis-ual geometry group block(3D-VGG-Block)to reduce the risk of overfitting while improving training speed.Aiming at the problem of the lack of samples in the data set,two methods of image flipping and small amplitude flipping are used for data amplification.Finally,the recognition rate on the data set is as high as 69.11%.Compared with the current international average micro-expression recog-nition rate of about 67%,the proposed algorithm has obvious advantages in recognition rate. 展开更多
关键词 micro-expression recognition deep learning three-dimensional convolutional neural network(3D-CNN) batch normalization(BN)algorithm DROPOUT
下载PDF
Individual Dairy Cattle Recognition Based on Deep Convolutional Neural Network 被引量:2
5
作者 ZHANG Mandun SHAN Xinyuan +3 位作者 YU Jinsu GUO Yingchun LI Ruiwen XU Mingquan 《Journal of Donghua University(English Edition)》 EI CAS 2018年第2期107-112,共6页
Image based individual dairy cattle recognition has gained much attention recently. In order to further improve the accuracy of individual dairy cattle recognition, an algorithm based on deep convolutional neural netw... Image based individual dairy cattle recognition has gained much attention recently. In order to further improve the accuracy of individual dairy cattle recognition, an algorithm based on deep convolutional neural network( DCNN) is proposed in this paper,which enables automatic feature extraction and classification that outperforms traditional hand craft features. Through making multigroup comparison experiments including different network layers,different sizes of convolution kernel and different feature dimensions in full connection layer,we demonstrate that the proposed method is suitable for dairy cattle classification. The experimental results show that the accuracy is significantly higher compared to two traditional image processing algorithms: scale invariant feature transform( SIFT) algorithm and bag of feature( BOF) model. 展开更多
关键词 DEEP learning DEEP convolutional neural network(dcnn) DAIRY CATTLE INDIVIDUAL RECOGNITION
下载PDF
Predicting Concrete Compressive Strength Using Deep Convolutional Neural Network Based on Image Characteristics 被引量:2
6
作者 Sanghyo Lee Yonghan Ahn Ha Young Kim 《Computers, Materials & Continua》 SCIE EI 2020年第10期1-17,共17页
In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera an... In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera and microscope were simultaneously used to obtain concrete surface images used as the input data for the DCNN.Thereafter,training,validation,and testing of the DCNNs were performed based on the DSLR camera and microscope image data.Results of the analysis indicated that the DCNN employing DSLR image data achieved a relatively higher accuracy.The accuracy of the DSLR-derived image data was attributed to the relatively wider range of the DSLR camera,which was beneficial for extracting a larger number of features.Moreover,the DSLR camera procured more realistic images than the microscope.Thus,when the compressive strength of concrete was evaluated using the DCNN employing a DSLR camera,time and cost were reduced,whereas the usefulness increased.Furthermore,an indirect comparison of the accuracy of the DCNN with that of existing non-destructive methods for evaluating the strength of concrete proved the reliability of DCNN-derived concrete strength predictions.In addition,it was determined that the DCNN used for concrete strength evaluations in this study can be further expanded to detect and evaluate various deteriorative factors that affect the durability of structures,such as salt damage,carbonation,sulfation,corrosion,and freezing-thawing. 展开更多
关键词 Deep convolutional neural network(dcnn) non-destructive testing(NDT) concrete compressive strength digital single-lens reflex(DSLR)camera MICROSCOPE
下载PDF
Image-Based Flow Prediction of Vocal Folds Using 3D Convolutional Neural Networks
7
作者 Yang Zhang Tianmei Pu +1 位作者 Jiasen Xu Chunhua Zhou 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期991-1002,共12页
In this work,a three dimensional(3D)convolutional neural network(CNN)model based on image slices of various normal and pathological vocal folds is proposed for accurate and efficient prediction of glottal flows.The 3D... In this work,a three dimensional(3D)convolutional neural network(CNN)model based on image slices of various normal and pathological vocal folds is proposed for accurate and efficient prediction of glottal flows.The 3D CNN model is composed of the feature extraction block and regression block.The feature extraction block is capable of learning low dimensional features from the high dimensional image data of the glottal shape,and the regression block is employed to flatten the output from the feature extraction block and obtain the desired glottal flow data.The input image data is the condensed set of 2D image slices captured in the axial plane of the 3D vocal folds,where these glottal shapes are synthesized based on the equations of normal vibration modes.The output flow data is the corresponding flow rate,averaged glottal pressure and nodal pressure distributions over the glottal surface.The 3D CNN model is built to establish the mapping between the input image data and output flow data.The ground-truth flow variables of each glottal shape in the training and test datasets are obtained by a high-fidelity sharp-interface immersed-boundary solver.The proposed model is trained to predict the concerned flow variables for glottal shapes in the test set.The present 3D CNN model is more efficient than traditional Computational Fluid Dynamics(CFD)models while the accuracy can still be retained,and more powerful than previous data-driven prediction models because more details of the glottal flow can be provided.The prediction performance of the trained 3D CNN model in accuracy and efficiency indicates that this model could be promising for future clinical applications. 展开更多
关键词 Vocal folds Computational fluid dynamics Machine learning 3D convolutional neural network
原文传递
Short‐term and long‐term memory self‐attention network for segmentation of tumours in 3D medical images
8
作者 Mingwei Wen Quan Zhou +3 位作者 Bo Tao Pavel Shcherbakov Yang Xu Xuming Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1524-1537,共14页
Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shap... Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shapes and sizes.The popular deep learning‐based segmentation algorithms generally rely on the convolutional neural network(CNN)and Transformer.The former cannot extract the global image features effectively while the latter lacks the inductive bias and involves the complicated computation for 3D volume data.The existing hybrid CNN‐Transformer network can only provide the limited performance improvement or even poorer segmentation performance than the pure CNN.To address these issues,a short‐term and long‐term memory self‐attention network is proposed.Firstly,a distinctive self‐attention block uses the Transformer to explore the correlation among the region features at different levels extracted by the CNN.Then,the memory structure filters and combines the above information to exclude the similar regions and detect the multiple tumours.Finally,the multi‐layer reconstruction blocks will predict the tumour boundaries.Experimental results demonstrate that our method outperforms other methods in terms of subjective visual and quantitative evaluation.Compared with the most competitive method,the proposed method provides Dice(82.4%vs.76.6%)and Hausdorff distance 95%(HD95)(10.66 vs.11.54 mm)on the KiTS19 as well as Dice(80.2%vs.78.4%)and HD95(9.632 vs.12.17 mm)on the LiTS. 展开更多
关键词 3D medical images convolutional neural network self‐attention network TRANSFORMER tumor segmentation
下载PDF
基于DCNN网络及Self-Attention-BiGRU机制的轴承剩余寿命预测
9
作者 刘森 刘美 +2 位作者 贺银超 韩惠子 孟亚男 《机电工程》 CAS 北大核心 2024年第5期786-796,共11页
深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiG... 深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiGRU)以及自注意力机制(Self-Attention)三种模块的滚动轴承剩余使用寿命预测模型。首先,利用DCNN网络对原始振动信号的时域特征、频域特征进行了提取;然后,使用不确定量化的方法对提取到的特征进行了评价和筛选,利用筛选过后的特征构建了新的替代特征集;最后,利用Self-Attention-BiGRU网络对轴承的剩余使用寿命进行了预测,并在IEEE PHM2012数据集上进行了验证。实验结果表明:相较于BiGRU、GRU和BiLSTM三种模型的预测结果,基于DCNN及Self-Attention-BiGRU方法的预测结果最优,两项误差值:平均绝对误差(MAE)、均方根误差(RMSE)最低,其中工况一的一号轴承RUL预测的MAE值相较于BiGRU、GRU以及BiLSTM网络分别下降了7.0%、7.4%和6.5%,RMSE值相较于其他三种模型分别下降了7.6%、8.4%和6.9%,预测的Score值最高,分值为0.985。通过不同数据集的划分,证明了该方法在轴承RUL预测时的强鲁棒性。实验结果验证了基于DCNN网络及Self-Attention-BiGRU模型在轴承剩余使用寿命预测中的有效性。 展开更多
关键词 滚动轴承 剩余使用寿命 双向门控循环单元 不确定量化 自注意力机制 深度卷积神经网络 预测与健康管理
下载PDF
Automatic detection of breast lesions in automated 3D breast ultrasound with cross-organ transfer learning
10
作者 Lingyun BAO Zhengrui HUANG +7 位作者 Zehui LIN Yue SUN Hui CHEN You LI Zhang LI Xiaochen YUAN Lin XU Tao TAN 《虚拟现实与智能硬件(中英文)》 EI 2024年第3期239-251,共13页
Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing... Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing interest in applying this technology to diverse applications in medical image analysis.Automated three dimensional Breast Ultrasound is a vital tool for detecting breast cancer,and computer-assisted diagnosis software,developed based on deep learning,can effectively assist radiologists in diagnosis.However,the network model is prone to overfitting during training,owing to challenges such as insufficient training data.This study attempts to solve the problem caused by small datasets and improve model detection performance.Methods We propose a breast cancer detection framework based on deep learning(a transfer learning method based on cross-organ cancer detection)and a contrastive learning method based on breast imaging reporting and data systems(BI-RADS).Results When using cross organ transfer learning and BIRADS based contrastive learning,the average sensitivity of the model increased by a maximum of 16.05%.Conclusion Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced,and contrastive learning method based on BI-RADS can improve the detection performance of the model. 展开更多
关键词 Breast ultrasound Automated 3D breast ultrasound Breast cancers Deep learning Transfer learning convolutional neural networks Computer-aided diagnosis Cross organ learning
下载PDF
基于3DCNN的CSI-cluster室内指纹定位算法 被引量:4
11
作者 李新春 王藜谚 王浩童 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2020年第3期345-355,共11页
针对室内环境中复杂的多径效应影响定位精度问题,提出一种基于3维卷积神经网络(3 dimensional convolutional neural network,3DCNN)多径程度划分的自校准指纹定位算法。该算法利用MeanShift方法分析定位区域内每一个采样点的信道状态... 针对室内环境中复杂的多径效应影响定位精度问题,提出一种基于3维卷积神经网络(3 dimensional convolutional neural network,3DCNN)多径程度划分的自校准指纹定位算法。该算法利用MeanShift方法分析定位区域内每一个采样点的信道状态信息数据分布特性,得到其可代表多径效应程度的簇类数量,结合阈值原则将指纹库划分为2种不同多径程度的子库,从而减少多径程度差异较大的指纹点对后续定位影响利用3DCNN深度学习2类指纹子库。在定位阶段,根据校准算法判断待测数据所属子库,并采用相应的3DCNN模型估计位置。通过仿真实验验证,该方法在保证指纹库构建合理性和高效性的同时,在定位精度方面实现了明显的提升,优于与之对比的相关算法。 展开更多
关键词 室内定位 信道状态信息 多径效应 指纹子库 3维卷积神经网络
下载PDF
Audiovisual speech recognition based on a deep convolutional neural network
12
作者 Shashidhar Rudregowda Sudarshan Patilkulkarni +2 位作者 Vinayakumar Ravi Gururaj H.L. Moez Krichen 《Data Science and Management》 2024年第1期25-34,共10页
Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for India... Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for Indian English linguistics and categorized it into three main categories:(1)audio recognition,(2)visual feature extraction,and(3)combined audio and visual recognition.Audio features were extracted using the mel-frequency cepstral coefficient,and classification was performed using a one-dimension convolutional neural network.Visual feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent neural networks.Finally,integration was performed using a deep convolutional network.The audio speech of Indian English was successfully recognized with accuracies of 93.67%and 91.53%,respectively,using testing data from 200 epochs.The training accuracy for visual speech recognition using the Indian English dataset was 77.48%and the test accuracy was 76.19%using 60 epochs.After integration,the accuracies of audiovisual speech recognition using the Indian English dataset for training and testing were 94.67%and 91.75%,respectively. 展开更多
关键词 Audiovisual speech recognition Custom dataset 1D convolution neural network(CNN) Deep CNN(dcnn) Long short-term memory(LSTM) Lipreading Dlib Mel-frequency cepstral coefficient(MFCC)
下载PDF
Dynamic Hand Gesture Recognition Using 3D-CNN and LSTM Networks 被引量:3
13
作者 Muneeb Ur Rehman Fawad Ahmed +4 位作者 Muhammad Attique Khan Usman Tariq Faisal Abdulaziz Alfouzan Nouf M.Alzahrani Jawad Ahmad 《Computers, Materials & Continua》 SCIE EI 2022年第3期4675-4690,共16页
Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream.Many researchers have been working on visionbase... Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream.Many researchers have been working on visionbased gesture recognition due to its various applications.This paper proposes a deep learning architecture based on the combination of a 3D Convolutional Neural Network(3D-CNN)and a Long Short-Term Memory(LSTM)network.The proposed architecture extracts spatial-temporal information from video sequences input while avoiding extensive computation.The 3D-CNN is used for the extraction of spectral and spatial features which are then given to the LSTM network through which classification is carried out.The proposed model is a light-weight architecture with only 3.7 million training parameters.The model has been evaluated on 15 classes from the 20BN-jester dataset available publicly.The model was trained on 2000 video-clips per class which were separated into 80%training and 20%validation sets.An accuracy of 99%and 97%was achieved on training and testing data,respectively.We further show that the combination of 3D-CNN with LSTM gives superior results as compared to MobileNetv2+LSTM. 展开更多
关键词 convolutional neural networks 3D-CNN LSTM SPATIOTEMPORAL jester real-time hand gesture recognition
下载PDF
CurveNet:Curvature-Based Multitask Learning Deep Networks for 3D Object Recognition 被引量:2
14
作者 A.A.M.Muzahid Wanggen Wan +2 位作者 Ferdous Sohel Lianyao Wu Li Hou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第6期1177-1187,共11页
In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object ... In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object recognition.In this paper,we propose to use the principal curvature directions of 3D objects(using a CAD model)to represent the geometric features as inputs for the 3D CNN.Our framework,namely CurveNet,learns perceptually relevant salient features and predicts object class labels.Curvature directions incorporate complex surface information of a 3D object,which helps our framework to produce more precise and discriminative features for object recognition.Multitask learning is inspired by sharing features between two related tasks,where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification.Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification.We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs.A Cross-Stitch module was adopted to learn effective shared features across multiple representations.We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task. 展开更多
关键词 3D shape analysis convolutional neural network DNNs object classification volumetric CNN
下载PDF
Behavior recognition algorithm based on the improved R3D and LSTM network fusion 被引量:1
15
作者 Wu Jin An Yiyuan +1 位作者 Dai Wei Zhao Bo 《High Technology Letters》 EI CAS 2021年第4期381-387,共7页
Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the... Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the residual module is extended to three dimensions,which can extract features in the time and space domain at the same time.Second,by changing the size of the pooling layer window the integrity of the time domain features is preserved,at the same time,in order to overcome the difficulty of network training and over-fitting problems,the batch normalization(BN)layer and the dropout layer are added.After that,because the global average pooling layer(GAP)is affected by the size of the feature map,the network cannot be further deepened,so the convolution layer and maxpool layer are added to the R3D network.Finally,because LSTM has the ability to memorize information and can extract more abstract timing features,the LSTM network is introduced into the R3D network.Experimental results show that the R3D+LSTM network achieves 91%recognition rate on the UCF-101 dataset. 展开更多
关键词 behavior recognition three-dimensional residual convolutional neural network(R3D) long short-term memory(LSTM) DROPOUT batch normalization(BN)
下载PDF
基于VBGMM-DCNN的列车卫星定位欺骗干扰检测方法
16
作者 王思琦 刘江 +1 位作者 蔡伯根 赵阳 《导航定位与授时》 CSCD 2023年第4期58-68,共11页
面向基于全球导航卫星系统的铁路列车定位实施欺骗干扰的主动检测,在卫星定位解算层次,运用深度学习建模学习方法的优势,提出一种基于变分贝叶斯高斯混合模型-深度卷积神经网络(variational Bayesian Gaussian mixture model-deep convo... 面向基于全球导航卫星系统的铁路列车定位实施欺骗干扰的主动检测,在卫星定位解算层次,运用深度学习建模学习方法的优势,提出一种基于变分贝叶斯高斯混合模型-深度卷积神经网络(variational Bayesian Gaussian mixture model-deep convolutional neural network,VBGMM-DCNN)的列车卫星定位欺骗干扰检测方法。该方法首先提取能够充分体现欺骗干扰对定位解算过程作用影响的卫星观测特征参数,构建干扰检测特征矢量;然后,采用VBGMM模型拟合经过预处理的特征向量的概率分布,得到二维概率密度图;最后,将概率密度图用于DCNN模型实施欺骗干扰的检测决策。结合现场实验所得运行场景数据,利用实验室搭建的欺骗干扰测试环境实施了干扰注入测试与检验,结果表明,欺骗干扰检测性能随着DCNN网络深度的增加而提升,相对于常规有监督决策方法F1值最高提升44.68%。基于VBGMM-DCNN的欺骗干扰检测能够适应测试验证中运用的列车运行特征及定位观测条件,所达到的检测性能优于对比算法。 展开更多
关键词 全球导航卫星系统 列车定位 欺骗攻击检测 变分贝叶斯高斯混合模型 深度卷积神经网络
下载PDF
3DMKDR:3D Multiscale Kernels CNN Model for Depression Recognition Based on EEG 被引量:1
17
作者 Yun Su Zhixuan Zhang +2 位作者 Qi Cai Bingtao Zhang Xiaohong Li 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期230-241,共12页
Depression has become a major health threat around the world,especially for older people,so the effective detection method for depression is a great public health challenge.Electroencephalogram(EEG)can be used as a bi... Depression has become a major health threat around the world,especially for older people,so the effective detection method for depression is a great public health challenge.Electroencephalogram(EEG)can be used as a biomarker to effectively explore depression recognition.Motivated by the studies that multiple smaller scale kernels could increase nonlinear expression compared to a larger kernel,this article proposes a model named the three-dimensional multiscale kernels convolutional neural network model for the depression disorder recognition(3DMKDR),which is a three-dimensional convolutional neural network model with multiscale convolutional kernels for depression recognition based on EEG signals.A three-dimensional structure of the EEG is built by extending one-dimensional feature sequences into a two-dimensional electrode matrix to excavate the related spatiotemporal information among electrodes and the collected electrode matrix.By the major depressive disorder(MDD)and the multi-modal open dataset for mental-disorder analysis(MODMA)datasets,the experiment shows that the accuracies of depression recognition are up to99.86%and 98.01%in the subject-dependent experiment,and 95.80%and 82.27%in the subjectindependent experiment,which are higher than alternative competitive methods.The experimental results demonstrate that the proposed 3DMKDR is potentially useful for depression recognition in older persons in the future. 展开更多
关键词 major depression disorder(MDD) electroencephalogram(EEG) three-dimensional convolutional neural network(3D-CNN) spatiotemporal features
下载PDF
Transfer Learning on Deep Neural Networks to Detect Pornography
18
作者 Saleh Albahli 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期701-717,共17页
While the internet has a lot of positive impact on society,there are negative components.Accessible to everyone through online platforms,pornography is,inducing psychological and health related issues among people of ... While the internet has a lot of positive impact on society,there are negative components.Accessible to everyone through online platforms,pornography is,inducing psychological and health related issues among people of all ages.While a difficult task,detecting pornography can be the important step in determining the porn and adult content in a video.In this paper,an architecture is proposed which yielded high scores for both training and testing.This dataset was produced from 190 videos,yielding more than 19 h of videos.The main sources for the content were from YouTube,movies,torrent,and websites that hosts both pornographic and non-pornographic contents.The videos were from different ethnicities and skin color which ensures the models can detect any kind of video.A VGG16,Inception V3 and Resnet 50 models were initially trained to detect these pornographic images but failed to achieve a high testing accuracy with accuracies of 0.49,0.49 and 0.78 respectively.Finally,utilizing transfer learning,a convolutional neural network was designed and yielded an accuracy of 0.98. 展开更多
关键词 Pornographic video detection classification convolutional neural network InceptionV3 Resnet50 VGG16
下载PDF
基于DeepLabv3+的电网引流线夹中心螺杆自动化分割
19
作者 李佳馨 刘君 燕振华 《南昌航空大学学报(自然科学版)》 CAS 2023年第4期73-81,96,共10页
基于计算机视觉的线夹孔洞定位是实现电网引流作业自动化的关键环节之一。线夹的中心螺杆作为线夹孔位的重要定位标志,对其进行自动化分割是实现线夹孔位定位的有效手段。为此提出了一种基于DeepLabv3+的线夹中心螺杆自动化分割方法,同... 基于计算机视觉的线夹孔洞定位是实现电网引流作业自动化的关键环节之一。线夹的中心螺杆作为线夹孔位的重要定位标志,对其进行自动化分割是实现线夹孔位定位的有效手段。为此提出了一种基于DeepLabv3+的线夹中心螺杆自动化分割方法,同时将DeepLabv3+的分割性能与主流卷积神经网络U-Net、SegNet和PspNet进行比较。结果显示,基于DeepLabv3+的分割方法对线夹中心螺杆的分割不但具有96.78%的总体精度,在敏感性和DICE相似性定量分析中也都表现较好。该方法能够实现线夹孔位的自动化定位,为实现电网引流作业自动化提供了一种行之有效的方法。 展开更多
关键词 DeepLabv3+ 螺杆自动分割 深度卷积神经网络 图像语义分割
下载PDF
MSF-Net: A Multilevel Spatiotemporal Feature Fusion Network Combines Attention for Action Recognition
20
作者 Mengmeng Yan Chuang Zhang +3 位作者 Jinqi Chu Haichao Zhang Tao Ge Suting Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1433-1449,共17页
An action recognition network that combines multi-level spatiotemporal feature fusion with an attention mechanism is proposed as a solution to the issues of single spatiotemporal feature scale extraction,information r... An action recognition network that combines multi-level spatiotemporal feature fusion with an attention mechanism is proposed as a solution to the issues of single spatiotemporal feature scale extraction,information redundancy,and insufficient extraction of frequency domain information in channels in 3D convolutional neural networks.Firstly,based on 3D CNN,this paper designs a new multilevel spatiotemporal feature fusion(MSF)structure,which is embedded in the network model,mainly through multilevel spatiotemporal feature separation,splicing and fusion,to achieve the fusion of spatial perceptual fields and short-medium-long time series information at different scales with reduced network parameters;In the second step,a multi-frequency channel and spatiotemporal attention module(FSAM)is introduced to assign different frequency features and spatiotemporal features in the channels are assigned corresponding weights to reduce the information redundancy of the feature maps.Finally,we embed the proposed method into the R3D model,which replaced the 2D convolutional filters in the 2D Resnet with 3D convolutional filters and conduct extensive experimental validation on the small and medium-sized dataset UCF101 and the largesized dataset Kinetics-400.The findings revealed that our model increased the recognition accuracy on both datasets.Results on the UCF101 dataset,in particular,demonstrate that our model outperforms R3D in terms of a maximum recognition accuracy improvement of 7.2%while using 34.2%fewer parameters.The MSF and FSAM are migrated to another traditional 3D action recognition model named C3D for application testing.The test results based on UCF101 show that the recognition accuracy is improved by 8.9%,proving the strong generalization ability and universality of the method in this paper. 展开更多
关键词 3D convolutional neural network action recognition MSF FSAM
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部