Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lu...Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .展开更多
The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption...The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption process with shell diffusion as the controlling step were determined by semi-empirical and semi-theoretical methods, and the apparent activation energy of the hydrogen absorption process was obtained. The calculation results can well accord with the experimental data, and can well forecast the hydrogen storage capacity and absorption rate at different times. By using the kinetics equation, the effects of temperature and pressure on the hydrogen storage process can also be well understood. The kinetics equation is helpful for the design of the hydrogen storage container.展开更多
Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its ph...Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.展开更多
In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storag...In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storage construction technologies were established, mainly including UGS site selection and evaluation, key index design, well drilling and completion, surface engineering and operational risk warning and assessment, etc. The effect of field application was discussed and summarized. Firstly, trap dynamic sealing capacity evaluation technology for conversion of UGS from the fault depleted or partially depleted gas reservoirs. A key index design method mainly based on the effective gas storage capacity design for water flooded heterogeneous gas reservoirs was proposed. To effectively guide the engineering construction of UGS, the safe well drilling, high quality cementing and high pressure and large flow surface injection and production engineering optimization suitable for long-term alternate loading condition and ultra-deep and ultra-low temperature formation were developed. The core surface equipment like high pressure gas injection compressor can be manufactured by our own. Last, the full-system operational risk warning and assessment technology for UGS was set up. The above 5 key technologies have been utilized in site selection, development scheme design, engineering construction and annual operations of 6 UGS groups, e.g. the Hutubi UGS in Xinjiang. To date, designed main indexes are highly consistent with actural performance, the 6 UGS groups have the load capacity of over 7.5 billion cubic meters of working gas volume and all the storage facilities have been running efficiently and safely.展开更多
To estimate basal water storage beneath the Antarctic ice sheet, it is essential to have data on the three-dimensional characteristics of subglacial lakes. We present a method to estimate the water depth and surface a...To estimate basal water storage beneath the Antarctic ice sheet, it is essential to have data on the three-dimensional characteristics of subglacial lakes. We present a method to estimate the water depth and surface area of Antarctic subglacial lakes from the inversion of hydraulic potential method. Lake Vostok is chosen as a case study because of the diverse and comprehensive measurements that have been obtained over and around the lake. The average depth of Lake Vostok is around 345±4 m. We estimated the surface area of Lake Vostok beneath the ice sheet to be about 13300±594 km^2. The lake consists of two sub-basins separated by a ridge at water depths of about 200–300 m. The surface area of the northern sub-basin is estimated to be about half of that of the southern basin. The maximum depths of the northern and southern sub-basins are estimated to be about 450 and 850 m, respectively. Total water volume is estimated to be about 4658±204 km^3. These estimates are compared with previous estimates obtained from seismic data and inversion of aerogravity data. In general, our estimates are closer to those obtained from the inversion of aerogravity data than those from seismic data, indicating the applicability of our method to the estimation of water depths of other subglacial lakes.展开更多
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe...An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.展开更多
The deformation responses of surface cap rocks of Underground Gas Storage( UGS) in Hutubi,Xinjiang during gas injection and production were investigated with the GPS data recorded by the deformation monitoring network...The deformation responses of surface cap rocks of Underground Gas Storage( UGS) in Hutubi,Xinjiang during gas injection and production were investigated with the GPS data recorded by the deformation monitoring network,which includes 13 observation sites. The time series of three-dimensional deformation of the surface cap rocks was obtained in the UGS operation process,and the deformation signals in different phases were identified by combining the GPS data with wellhead pressure data. The results show that the respiration response of surface cap rock deformation is obvious during gas injection and production of UGS,and the surface deformation due to a 1MPa change of wellhead pressure is 1. 02 mm in gas injection and 1. 24 mm in gas production horizontally, and- 1. 11 mm in gas injection and 0. 86 mm in gas production vertically.展开更多
Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as...Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as deep saline aquifers can offer the greatest potential from a capacity point of view. Hence,research on core-scale CO2/brine multiphase migration processes is of great significance for precisely estimating storage efficiency, ensuring storage security, and predicting the long-term effects of the sequestered CO2in subsurface saline aquifers. This review article initially presents a brief description of the essential aspects of CO2subsurface transport and geological trapping mechanisms, and then outlines the state-of-the-art laboratory core flooding experimental apparatus that has been adopted for simulating CO2injection and migration processes in the literature over the past decade. Finally, a summary of the characteristics, components and applications of publicly reported core flooding equipment as well as major research gaps and areas in need of further study are given in relevance to laboratory-scale core flooding experiments in CO2geosequestration under reservoir conditions.展开更多
A novel three-dimensional hierarchical WO_(3)photoelectrode was prepared by solvothermal method,and ZnO was deposited on its surface by electrochemical method.The WO_(3)/ZnWO_(4)/ZnO multiphaseheterojunction photoelec...A novel three-dimensional hierarchical WO_(3)photoelectrode was prepared by solvothermal method,and ZnO was deposited on its surface by electrochemical method.The WO_(3)/ZnWO_(4)/ZnO multiphaseheterojunction photoelectrode was prepared by further annealing treatment to explore the photoinduced cathodic protection(CP)performance.Compared with WO_(3)and ZnO,the photoinduced CP and electron storage capacity performance of WO_(3)/ZnWO_(4)/ZnO is significantly improved in 3.5%NaCl solution without adding any hole scavenger.The electron storage capacity of the WO_(3)/ZnWO_(4)/ZnO heterojunction makes it possible to continuously protect metallic materials in the dark after switching off the light,which can realize long-term and effective photoinduced CP.展开更多
The increasing demand for geometrically complex structures—specifically, higher-inlet-temperature turbine blades for the fifth-generation or other high-generation machines of advanced fighter aircrafts—hasmade the d...The increasing demand for geometrically complex structures—specifically, higher-inlet-temperature turbine blades for the fifth-generation or other high-generation machines of advanced fighter aircrafts—hasmade the development of more complex double-walled three-layer hollow-cavity structures a necessity.However, this requires the preparation of complex ceramic cores and advanced, integrated technologies.Stereolithographic three-dimensional printing (SLA-3DP) technology, with digital control upon materialmorphology, composition, and structure, is a high integration and versatile technique that is superior tothe traditional manufacturing techniques for ceramic cores, including gel casting, injection molding, andhot pressing. The latent capacity of this technique is contingent on the progress of processing routesthat significantly reduce the distortion and defect formation in response to the elimination of the reactedorganic monomer phase during photo-curing. Despite the tremendous progress in the field, multiple challenges remain, such as the preparation of high-solid-content and low-viscosity suspensions, SLA-3DP oflarge double-walled ceramic cores with complex structures, and process optimization and sinter strengthening for the fabrication of ceramic cores. These challenges have prevented the broader applications andreduced the impact of the SLA-3DP technology. This review discusses cutting-edge research on the crucialfactors governing this production method. Specifically, we outline the existing challenges within the fieldand provide our perspective on the upcoming research work and progress.展开更多
Rice dwarf virus (RDV) is a double-shelled icosahedral virus. Using electron cryomicro-scopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner...Rice dwarf virus (RDV) is a double-shelled icosahedral virus. Using electron cryomicro-scopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner shell capsid without the outer shell and viral RNA. The results show that the inner shell is a thin, densely packed, smooth structure, which provides a scaffold for the full virus. A total of 120 copies of the major inner shell capsid protein P3 forms 60 dimers arranged in a T=1 icosahedral lattice. A close examination on the subunit packing of the T=1 inner core P3 with that of the T=13/ outer shell P8 indicated that P8 trimers connect with P3 through completely non-equivalent, yet highly specific, intermolecular interactions.展开更多
文摘Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .
文摘The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption process with shell diffusion as the controlling step were determined by semi-empirical and semi-theoretical methods, and the apparent activation energy of the hydrogen absorption process was obtained. The calculation results can well accord with the experimental data, and can well forecast the hydrogen storage capacity and absorption rate at different times. By using the kinetics equation, the effects of temperature and pressure on the hydrogen storage process can also be well understood. The kinetics equation is helpful for the design of the hydrogen storage container.
基金supported by the Open Research Fund of State Key Laboratory of Geomechanics and GeotechnicalEngineering, IRSM, CAS (Grant No. Z017002)the National Natural Science Foundation of China (Grant Nos. 41872210 and 41274111)financial support from the China-Australia Geological Storage of CO_2 (CAGS) Project funded by the Australian Government under the auspices of the China-Australia Joint Coordination Group on Clean Coal Technology
文摘Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.
基金Supported by the CNPC Science and Technology Major Project(2015E-4002)
文摘In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storage construction technologies were established, mainly including UGS site selection and evaluation, key index design, well drilling and completion, surface engineering and operational risk warning and assessment, etc. The effect of field application was discussed and summarized. Firstly, trap dynamic sealing capacity evaluation technology for conversion of UGS from the fault depleted or partially depleted gas reservoirs. A key index design method mainly based on the effective gas storage capacity design for water flooded heterogeneous gas reservoirs was proposed. To effectively guide the engineering construction of UGS, the safe well drilling, high quality cementing and high pressure and large flow surface injection and production engineering optimization suitable for long-term alternate loading condition and ultra-deep and ultra-low temperature formation were developed. The core surface equipment like high pressure gas injection compressor can be manufactured by our own. Last, the full-system operational risk warning and assessment technology for UGS was set up. The above 5 key technologies have been utilized in site selection, development scheme design, engineering construction and annual operations of 6 UGS groups, e.g. the Hutubi UGS in Xinjiang. To date, designed main indexes are highly consistent with actural performance, the 6 UGS groups have the load capacity of over 7.5 billion cubic meters of working gas volume and all the storage facilities have been running efficiently and safely.
基金funded by the Natural Science Foundation of China (Grant nos. 41674085 and 41621091)the National Key Basic Research Program of China (973 program, Grant nos. 2012CB957703 and 2013CB733301)
文摘To estimate basal water storage beneath the Antarctic ice sheet, it is essential to have data on the three-dimensional characteristics of subglacial lakes. We present a method to estimate the water depth and surface area of Antarctic subglacial lakes from the inversion of hydraulic potential method. Lake Vostok is chosen as a case study because of the diverse and comprehensive measurements that have been obtained over and around the lake. The average depth of Lake Vostok is around 345±4 m. We estimated the surface area of Lake Vostok beneath the ice sheet to be about 13300±594 km^2. The lake consists of two sub-basins separated by a ridge at water depths of about 200–300 m. The surface area of the northern sub-basin is estimated to be about half of that of the southern basin. The maximum depths of the northern and southern sub-basins are estimated to be about 450 and 850 m, respectively. Total water volume is estimated to be about 4658±204 km^3. These estimates are compared with previous estimates obtained from seismic data and inversion of aerogravity data. In general, our estimates are closer to those obtained from the inversion of aerogravity data than those from seismic data, indicating the applicability of our method to the estimation of water depths of other subglacial lakes.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-major project-Research on tight oil-shale oil reservoir engineering methods and key technologies in Ordos Basin(ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015).
文摘An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.
基金sponsored by the National Natural Science Foundation of China(41474097,41304067,47474016,41474051,41404015)
文摘The deformation responses of surface cap rocks of Underground Gas Storage( UGS) in Hutubi,Xinjiang during gas injection and production were investigated with the GPS data recorded by the deformation monitoring network,which includes 13 observation sites. The time series of three-dimensional deformation of the surface cap rocks was obtained in the UGS operation process,and the deformation signals in different phases were identified by combining the GPS data with wellhead pressure data. The results show that the respiration response of surface cap rock deformation is obvious during gas injection and production of UGS,and the surface deformation due to a 1MPa change of wellhead pressure is 1. 02 mm in gas injection and 1. 24 mm in gas production horizontally, and- 1. 11 mm in gas injection and 0. 86 mm in gas production vertically.
基金supported by the National Natural Science Foundation of China(Grant No.41274111)the financial support of the National Department Public Benefit Research Foundation of MLR,China(Grant No.201211063-4-1)the One Hundred Talent Program of CAS(Grant No.O931061C01)
文摘Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as deep saline aquifers can offer the greatest potential from a capacity point of view. Hence,research on core-scale CO2/brine multiphase migration processes is of great significance for precisely estimating storage efficiency, ensuring storage security, and predicting the long-term effects of the sequestered CO2in subsurface saline aquifers. This review article initially presents a brief description of the essential aspects of CO2subsurface transport and geological trapping mechanisms, and then outlines the state-of-the-art laboratory core flooding experimental apparatus that has been adopted for simulating CO2injection and migration processes in the literature over the past decade. Finally, a summary of the characteristics, components and applications of publicly reported core flooding equipment as well as major research gaps and areas in need of further study are given in relevance to laboratory-scale core flooding experiments in CO2geosequestration under reservoir conditions.
基金financially supported by the National Natural Science Foundation of China(No.41976036)the State Key Laboratory for Marine Corrosion and Protection,Luoyang Ship Material Research Institute(LSMRI)(Nos.KF190408 and KF190404)。
文摘A novel three-dimensional hierarchical WO_(3)photoelectrode was prepared by solvothermal method,and ZnO was deposited on its surface by electrochemical method.The WO_(3)/ZnWO_(4)/ZnO multiphaseheterojunction photoelectrode was prepared by further annealing treatment to explore the photoinduced cathodic protection(CP)performance.Compared with WO_(3)and ZnO,the photoinduced CP and electron storage capacity performance of WO_(3)/ZnWO_(4)/ZnO is significantly improved in 3.5%NaCl solution without adding any hole scavenger.The electron storage capacity of the WO_(3)/ZnWO_(4)/ZnO heterojunction makes it possible to continuously protect metallic materials in the dark after switching off the light,which can realize long-term and effective photoinduced CP.
基金This work was supported by the National Key Research and Development Program,China(No.2018YFB1106600)National Science and Technology Major Project,China(No.2017-VI-0002–0072 and No.Y2019-VII-0011-0151).
文摘The increasing demand for geometrically complex structures—specifically, higher-inlet-temperature turbine blades for the fifth-generation or other high-generation machines of advanced fighter aircrafts—hasmade the development of more complex double-walled three-layer hollow-cavity structures a necessity.However, this requires the preparation of complex ceramic cores and advanced, integrated technologies.Stereolithographic three-dimensional printing (SLA-3DP) technology, with digital control upon materialmorphology, composition, and structure, is a high integration and versatile technique that is superior tothe traditional manufacturing techniques for ceramic cores, including gel casting, injection molding, andhot pressing. The latent capacity of this technique is contingent on the progress of processing routesthat significantly reduce the distortion and defect formation in response to the elimination of the reactedorganic monomer phase during photo-curing. Despite the tremendous progress in the field, multiple challenges remain, such as the preparation of high-solid-content and low-viscosity suspensions, SLA-3DP oflarge double-walled ceramic cores with complex structures, and process optimization and sinter strengthening for the fabrication of ceramic cores. These challenges have prevented the broader applications andreduced the impact of the SLA-3DP technology. This review discusses cutting-edge research on the crucialfactors governing this production method. Specifically, we outline the existing challenges within the fieldand provide our perspective on the upcoming research work and progress.
基金theNational Natural Science Foundation of China (Grant No. 39870181), NIH (USA, AI 46420 to ZHZ) and the Welch Foundation (AU-1492 to ZHZ).
文摘Rice dwarf virus (RDV) is a double-shelled icosahedral virus. Using electron cryomicro-scopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner shell capsid without the outer shell and viral RNA. The results show that the inner shell is a thin, densely packed, smooth structure, which provides a scaffold for the full virus. A total of 120 copies of the major inner shell capsid protein P3 forms 60 dimers arranged in a T=1 icosahedral lattice. A close examination on the subunit packing of the T=1 inner core P3 with that of the T=13/ outer shell P8 indicated that P8 trimers connect with P3 through completely non-equivalent, yet highly specific, intermolecular interactions.