In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) d...In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR.展开更多
Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-qual...Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.展开更多
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean...Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.展开更多
This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By u...This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.展开更多
Utilizing data from controlled seismic sources to image the subsurface structures and invert the physical properties of the subsurface media is a major effort in exploration geophysics. Dense seismic records with high...Utilizing data from controlled seismic sources to image the subsurface structures and invert the physical properties of the subsurface media is a major effort in exploration geophysics. Dense seismic records with high signal-to-noise ratio(SNR) and high fidelity helps in producing high quality imaging results. Therefore, seismic data denoising and missing traces reconstruction are significant for seismic data processing. Traditional denoising and interpolation methods rarely occasioned rely on noise level estimations, thus requiring heavy manual work to deal with records and the selection of optimal parameters. We propose a simultaneous denoising and interpolation method based on deep learning. For noisy records with missing traces, we adopt an iterative alternating optimization strategy and separate the objective function of the data restoring problem into two sub-problems. The seismic records can be reconstructed by solving a least-square problem and applying a set of pre-trained denoising models alternatively and iteratively.We demonstrate this method with synthetic and field data.展开更多
Addressing the difficulties of scattered and sparse observational data in ocean science,a new interpolation technique based on information diffusion is proposed in this paper.Based on a fuzzy mapping idea,sparse data ...Addressing the difficulties of scattered and sparse observational data in ocean science,a new interpolation technique based on information diffusion is proposed in this paper.Based on a fuzzy mapping idea,sparse data samples are diffused and mapped into corresponding fuzzy sets in the form of probability in an interpolation ellipse model.To avoid the shortcoming of normal diffusion function on the asymmetric structure,a kind of asymmetric information diffusion function is developed and a corresponding algorithm-ellipse model for diffusion of asymmetric information is established.Through interpolation experiments and contrast analysis of the sea surface temperature data with ARGO data,the rationality and validity of the ellipse model are assessed.展开更多
For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon'...For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon's thin-plate splines,Hardy's multiquadrics,and inverse multiquadrics.展开更多
A new 0.1° gridded daily sea surface temperature(SST) data product is presented covering the years 2003–2015. It is created by fusing satellite SST data retrievals from four microwave(Wind Sat, AMSR-E, ASMR2 ...A new 0.1° gridded daily sea surface temperature(SST) data product is presented covering the years 2003–2015. It is created by fusing satellite SST data retrievals from four microwave(Wind Sat, AMSR-E, ASMR2 and HY-2 A RM)and two infrared(MODIS and AVHRR) radiometers(RMs) based on the optimum interpolation(OI) method. The effect of including HY-2 A RM SST data in the fusion product is studied, and the accuracy of the new SST product is determined by various comparisons with moored and drifting buoy measurements. An evaluation using global tropical moored buoy measurements shows that the root mean square error(RMSE) of the new gridded SST product is generally less than 0.5℃. A comparison with US National Data Buoy Center meteorological and oceanographic moored buoy observations shows that the RMSE of the new product is generally less than 0.8℃. A comparison with measurements from drifting buoys shows an RMSE of 0.52–0.69℃. Furthermore, the consistency of the new gridded SST dataset and the Remote Sensing Systems microwave-infrared SST dataset is evaluated, and the result shows that no significant inconsistency exists between these two products.展开更多
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors...Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.展开更多
A general spatial interpolation method for tidal properties has been developed by solving a partial differential equation with a combination of different orders of harmonic operators using a mixed finite element metho...A general spatial interpolation method for tidal properties has been developed by solving a partial differential equation with a combination of different orders of harmonic operators using a mixed finite element method. Numerically, the equation is solved implicitly without iteration on an unstructured triangular mesh grid. The paper demonstrates the performance of the method for tidal property fields with different characteristics, boundary complexity, number of input data points, and data point distribution. The method has been successfully applied under several different tidal environments, including an idealized distribution in a square basin, coamplitude and cophase lines in the Taylor semi-infiite rotating channel, and tide coamplitude and cophase lines in the Bohai Sea and Chesapeake Bay. Compared to Laplace’s equation that NOAA/NOS currently uses for interpolation in hydrographic and oceanographic applications, the multiple-order harmonic equation method eliminates the problem of singularities at data points, and produces interpolation results with better accuracy and precision.展开更多
Meshed surfaces are ubiquitous in digital geometry processing and computer graphics. The set of attributes associated with each vertex such as the vertex locations, curvature, temperature, pressure or saliency, can be...Meshed surfaces are ubiquitous in digital geometry processing and computer graphics. The set of attributes associated with each vertex such as the vertex locations, curvature, temperature, pressure or saliency, can be recognized as data living on mani- fold surfaces. So interpolation and approximation for these data are of general interest. This paper presents two approaches for mani- fold data interpolation and approximation through the properties of Laplace-Beltrami operator (Laplace operator defined on a mani- fold surface). The first one is to use Laplace operator minimizing the membrane energy of a scalar function defined on a manifold. The second one is to use bi-Laplace operator minimizing the thin plate energy of a scalar function defined on a manifold. These two approaches can process data living on high genus meshed surfaces. The approach based on Laplace operator is more suitable for manifold data approximation and can be applied manifold data smoothing, while the one based on bi-Laplace operator is more suit- able for manifold data interpolation and can be applied image extremal envelope computation. All the application examples demon- strate that our procedures are robust and efficient.展开更多
Recovering accurate data is important for both earthquake and exploration seismology studies when data are sparsely sampled or partially missing. We present a method that allows for precise and accurate recovery of se...Recovering accurate data is important for both earthquake and exploration seismology studies when data are sparsely sampled or partially missing. We present a method that allows for precise and accurate recovery of seismic data using a localized fractal recovery method. This method requires that the data are self- similar on local and global spatial scales. We present examples that show that the intrinsic structure associated with seismic data can be easily and accurately recovered by using this approach. This result, in turn, indicates that seismic data are indeed self-similar on local and global scales. This method is applicable not only for seismic studies, but also for any field studies that require accurate recovery of data from sparsely sampled datasets with partially missing data. Our ability to recover the missing data with high fidelity and accuracy will qualitatively improve the images of seismic tomography.展开更多
A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the p...A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the principal components and the embedding dimension. Based on the improved SSA iterative interpolation, interpolated test and comparative analysis are carried out to the outgoing longwave radiation daily data. The results show that IQA can find globally optimal parameters to the error curve with local oscillation, and has advantage of fast computing speed. The improved interpolation method is effective in the interpolation of missing data.展开更多
Consider a kind of Hermit interpolation for scattered data of 3D by trivariate polynomial natural spline, such that the objective energy functional (with natural boundary conditions) is minimal. By the spline functi...Consider a kind of Hermit interpolation for scattered data of 3D by trivariate polynomial natural spline, such that the objective energy functional (with natural boundary conditions) is minimal. By the spline function methods in Hilbert space and variational theory of splines, the characters of the interpolation solution and how to construct it are studied. One can easily find that the interpolation solution is a trivariate polynomial natural spline. Its expression is simple and the coefficients can be decided by a linear system. Some numerical examples are presented to demonstrate our methods.展开更多
In this paper an error in[4]is pointed out and a method for constructingsurface interpolating scattered data points is presented.The main feature of the methodin this paper is that the surface so constructed is polyno...In this paper an error in[4]is pointed out and a method for constructingsurface interpolating scattered data points is presented.The main feature of the methodin this paper is that the surface so constructed is polynomial,which makes the construction simple and the calculation easy.展开更多
A series of related electrophysiology phenomena can be caused by the occurrence of interpolated ventricular premature contraction.In our recent three-dimensional Lorenz R-R scatter plot research,we found that atrioven...A series of related electrophysiology phenomena can be caused by the occurrence of interpolated ventricular premature contraction.In our recent three-dimensional Lorenz R-R scatter plot research,we found that atrioventricular node double path caused by interpolated ventricular premature contraction imprints a specifi c pattern on three-dimensional Lorenz plots generated from 24-hour Holter recordings.We found two independent subclusters separated from the interpolated premature beat precluster,the interpolated premature beat cluster,and the interpolated premature beat postcluster,respectively.Combined with use of the trajectory tracking function and the leap phenomenon,our results reveal the presence of the atrioventricular node double conduction path.展开更多
This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we...This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we employ convex combination method between three local schemes.The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets.We tested the proposed scheme with 36,65,and 100 data points for some well-known test functions.The scheme is also applied to interpolate the data for the electric potential.We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin(PS)and Clough–Tocher(CT)by measuring the maximum error,root mean square error(RMSE)and coefficient of determination(R^(2)).From the results obtained,our proposed method is competent with cubic Bézier,cubic Ball,PS and CT triangles splitting schemes to interpolate scattered data surface.This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.展开更多
Albania,like almost every country in the world,is continuously facing challenges in terms of the integrated management of water recourses.Limited access to water resources,the degrading quality of the environment,both...Albania,like almost every country in the world,is continuously facing challenges in terms of the integrated management of water recourses.Limited access to water resources,the degrading quality of the environment,both being closely related to various policies regarding sustainable development of the water resources,are some of the main issues in this field.In conformity with the requirements of the EU Water Framework Directive Albania has to develop water management plans for seven main river basins(including Shkumbini River Basin),which have been established in the country according to the Decision No.696,date 30.10.2019.The main goal of this study was the development of an integrated hydrological and water management model to evaluate the climate and development scenarios for the Shkumbini River Basin.The study applies the software WEAP(Water Evaluation and Planning)by SEI(Stockholm Environment Institute)to simulate and analyze a set of hydro-ecological and socio-economical scenarios in the Shkumbini River to identify its fundamental vulnerabilities to climate change between the years 2017-2050.Understanding specific vulnerabilities within a basin allows planners to propose and prioritize potential adaptation measures,which can be further examined with cost-benefit analyses.The spatially-based models can incorporate climatic and land use conditions that determine water supply,and this allows the model to investigate diverse changes within the system to consider the various outcomes of uncertain futures,whether climatic,managerial,infrastructural or demographic.展开更多
When cause of the aliasing lack probl using borehole sensors and microseimic events to image, spatial aliasing often occurred be- of sensors underground and the distance between the sensors which were too large. To so...When cause of the aliasing lack probl using borehole sensors and microseimic events to image, spatial aliasing often occurred be- of sensors underground and the distance between the sensors which were too large. To solve em, data reconstruction is often needed. Curvelet transform sparsity constrained inversion was widely used in the seismic data reconstruction field for its anisotropic, muhiscale and local basis. However, for the downhole ease, because the number of sampling point is mueh larger than the number of the sensors, the advantage of the cnrvelet basis can't perform very well. To mitigate the problem, the method that joints spline and curvlet-based compressive sensing was proposed. First, we applied the spline interpolation to the first arri- vals that to be interpolated. And the events are moved to a certain direction, such as horizontal, which can be represented by the curvelet basis sparsely. Under the spasity condition, curvelet-based compressive sensing was applied for the data, and directional filter was also used to mute the near vertical noises. After that, the events were shifted to the spline line to finish the interpolation workflow. The method was applied to a synthetic mod- el, and better result was presented than using curvelet transform interpolation directly. We applied the method to a real dataset, a mieroseismic downhole observation field data in Nanyang, using Kirchhoff migration method to image the microseimic event. Compared with the origin data, artifacts were suppressed on a certain degree.展开更多
In order to realize visualization of three-dimensional data field (TDDF) in instrument, two methods of visualization of TDDF and the usual manner of quick graphic and image processing are analyzed. And how to use Op...In order to realize visualization of three-dimensional data field (TDDF) in instrument, two methods of visualization of TDDF and the usual manner of quick graphic and image processing are analyzed. And how to use OpenGL technique and the characteristic of analyzed data to construct a TDDF, the ways of reality processing and interactive processing are described. Then the medium geometric element and a related realistic model are constructed by means of the first algorithm. Models obtained for attaching the third dimension in three-dimensional data field are presented. An example for TDDF realization of machine measuring is provided. The analysis of resultant graphic indicates that the three-dimensional graphics built by the method developed is featured by good reality, fast processing and strong interaction展开更多
基金The National Basic Research Program of China under contract No. 2013CB430304the National High-Tech R&D Program of China under contract No. 2013AA09A505the National Natural Science Foundation of China under contract Nos 41030854,40906015,40906016,41106005 and 41176003
文摘In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR.
基金This research was funded by the National Nature Sciences Foundation of China(Grant No.42250410321).
文摘Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.
基金The National Key R&D Program of China under contract No.2021YFC3101603.
文摘Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.
文摘This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.
基金sponsored by the National Natural Science Foundation of China(Grant No.41674120)
文摘Utilizing data from controlled seismic sources to image the subsurface structures and invert the physical properties of the subsurface media is a major effort in exploration geophysics. Dense seismic records with high signal-to-noise ratio(SNR) and high fidelity helps in producing high quality imaging results. Therefore, seismic data denoising and missing traces reconstruction are significant for seismic data processing. Traditional denoising and interpolation methods rarely occasioned rely on noise level estimations, thus requiring heavy manual work to deal with records and the selection of optimal parameters. We propose a simultaneous denoising and interpolation method based on deep learning. For noisy records with missing traces, we adopt an iterative alternating optimization strategy and separate the objective function of the data restoring problem into two sub-problems. The seismic records can be reconstructed by solving a least-square problem and applying a set of pre-trained denoising models alternatively and iteratively.We demonstrate this method with synthetic and field data.
基金Project of Natural Science Foundation of China (41276088)
文摘Addressing the difficulties of scattered and sparse observational data in ocean science,a new interpolation technique based on information diffusion is proposed in this paper.Based on a fuzzy mapping idea,sparse data samples are diffused and mapped into corresponding fuzzy sets in the form of probability in an interpolation ellipse model.To avoid the shortcoming of normal diffusion function on the asymmetric structure,a kind of asymmetric information diffusion function is developed and a corresponding algorithm-ellipse model for diffusion of asymmetric information is established.Through interpolation experiments and contrast analysis of the sea surface temperature data with ARGO data,the rationality and validity of the ellipse model are assessed.
文摘For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon's thin-plate splines,Hardy's multiquadrics,and inverse multiquadrics.
基金The National Key Research and Development Program of China under contract No.2016YFA0600102the Basic Scientific Fund for National Public Research Institutes of China under contract No.2015T03the State Oceanic Administration's Second Remote Sensing Survey of East India Ocean Environmental Parameters under contract No.GASI-02-IND-YGST2-04
文摘A new 0.1° gridded daily sea surface temperature(SST) data product is presented covering the years 2003–2015. It is created by fusing satellite SST data retrievals from four microwave(Wind Sat, AMSR-E, ASMR2 and HY-2 A RM)and two infrared(MODIS and AVHRR) radiometers(RMs) based on the optimum interpolation(OI) method. The effect of including HY-2 A RM SST data in the fusion product is studied, and the accuracy of the new SST product is determined by various comparisons with moored and drifting buoy measurements. An evaluation using global tropical moored buoy measurements shows that the root mean square error(RMSE) of the new gridded SST product is generally less than 0.5℃. A comparison with US National Data Buoy Center meteorological and oceanographic moored buoy observations shows that the RMSE of the new product is generally less than 0.8℃. A comparison with measurements from drifting buoys shows an RMSE of 0.52–0.69℃. Furthermore, the consistency of the new gridded SST dataset and the Remote Sensing Systems microwave-infrared SST dataset is evaluated, and the result shows that no significant inconsistency exists between these two products.
基金We gratefully acknowledge the support of National Natural Science Foundation of China(NSFC)(Grant No.51977133&Grant No.U2066209).
文摘Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.
文摘A general spatial interpolation method for tidal properties has been developed by solving a partial differential equation with a combination of different orders of harmonic operators using a mixed finite element method. Numerically, the equation is solved implicitly without iteration on an unstructured triangular mesh grid. The paper demonstrates the performance of the method for tidal property fields with different characteristics, boundary complexity, number of input data points, and data point distribution. The method has been successfully applied under several different tidal environments, including an idealized distribution in a square basin, coamplitude and cophase lines in the Taylor semi-infiite rotating channel, and tide coamplitude and cophase lines in the Bohai Sea and Chesapeake Bay. Compared to Laplace’s equation that NOAA/NOS currently uses for interpolation in hydrographic and oceanographic applications, the multiple-order harmonic equation method eliminates the problem of singularities at data points, and produces interpolation results with better accuracy and precision.
基金Supported by National Natural Science Foundation of China (No.61202261,No.61173102)NSFC Guangdong Joint Fund(No.U0935004)Opening Foundation of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education of China(No.93K172012K02)
文摘Meshed surfaces are ubiquitous in digital geometry processing and computer graphics. The set of attributes associated with each vertex such as the vertex locations, curvature, temperature, pressure or saliency, can be recognized as data living on mani- fold surfaces. So interpolation and approximation for these data are of general interest. This paper presents two approaches for mani- fold data interpolation and approximation through the properties of Laplace-Beltrami operator (Laplace operator defined on a mani- fold surface). The first one is to use Laplace operator minimizing the membrane energy of a scalar function defined on a manifold. The second one is to use bi-Laplace operator minimizing the thin plate energy of a scalar function defined on a manifold. These two approaches can process data living on high genus meshed surfaces. The approach based on Laplace operator is more suitable for manifold data approximation and can be applied manifold data smoothing, while the one based on bi-Laplace operator is more suit- able for manifold data interpolation and can be applied image extremal envelope computation. All the application examples demon- strate that our procedures are robust and efficient.
基金supported by the Spark Program of Earthquake Sciences (Grant No. XH13002)
文摘Recovering accurate data is important for both earthquake and exploration seismology studies when data are sparsely sampled or partially missing. We present a method that allows for precise and accurate recovery of seismic data using a localized fractal recovery method. This method requires that the data are self- similar on local and global spatial scales. We present examples that show that the intrinsic structure associated with seismic data can be easily and accurately recovered by using this approach. This result, in turn, indicates that seismic data are indeed self-similar on local and global scales. This method is applicable not only for seismic studies, but also for any field studies that require accurate recovery of data from sparsely sampled datasets with partially missing data. Our ability to recover the missing data with high fidelity and accuracy will qualitatively improve the images of seismic tomography.
基金the State Key Program for Basic Research of China(No.2007CB816003)the Open Item of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics of China
文摘A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the principal components and the embedding dimension. Based on the improved SSA iterative interpolation, interpolated test and comparative analysis are carried out to the outgoing longwave radiation daily data. The results show that IQA can find globally optimal parameters to the error curve with local oscillation, and has advantage of fast computing speed. The improved interpolation method is effective in the interpolation of missing data.
基金Ph.D.Programs Foundation (200805581022) of Ministry of Education of China
文摘Consider a kind of Hermit interpolation for scattered data of 3D by trivariate polynomial natural spline, such that the objective energy functional (with natural boundary conditions) is minimal. By the spline function methods in Hilbert space and variational theory of splines, the characters of the interpolation solution and how to construct it are studied. One can easily find that the interpolation solution is a trivariate polynomial natural spline. Its expression is simple and the coefficients can be decided by a linear system. Some numerical examples are presented to demonstrate our methods.
文摘In this paper an error in[4]is pointed out and a method for constructingsurface interpolating scattered data points is presented.The main feature of the methodin this paper is that the surface so constructed is polynomial,which makes the construction simple and the calculation easy.
文摘A series of related electrophysiology phenomena can be caused by the occurrence of interpolated ventricular premature contraction.In our recent three-dimensional Lorenz R-R scatter plot research,we found that atrioventricular node double path caused by interpolated ventricular premature contraction imprints a specifi c pattern on three-dimensional Lorenz plots generated from 24-hour Holter recordings.We found two independent subclusters separated from the interpolated premature beat precluster,the interpolated premature beat cluster,and the interpolated premature beat postcluster,respectively.Combined with use of the trajectory tracking function and the leap phenomenon,our results reveal the presence of the atrioventricular node double conduction path.
基金This research was fully supported by Universiti Teknologi PETRONAS(UTP)and Ministry of Education,Malaysia through research grant FRGS/1/2018/STG06/UTP/03/1/015 MA0-020(New rational quartic spline interpolation for image refinement)and UTP through a research grant YUTP:0153AA-H24(Spline Triangulation for Spatial Interpolation of Geophysical Data).
文摘This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we employ convex combination method between three local schemes.The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets.We tested the proposed scheme with 36,65,and 100 data points for some well-known test functions.The scheme is also applied to interpolate the data for the electric potential.We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin(PS)and Clough–Tocher(CT)by measuring the maximum error,root mean square error(RMSE)and coefficient of determination(R^(2)).From the results obtained,our proposed method is competent with cubic Bézier,cubic Ball,PS and CT triangles splitting schemes to interpolate scattered data surface.This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.
文摘Albania,like almost every country in the world,is continuously facing challenges in terms of the integrated management of water recourses.Limited access to water resources,the degrading quality of the environment,both being closely related to various policies regarding sustainable development of the water resources,are some of the main issues in this field.In conformity with the requirements of the EU Water Framework Directive Albania has to develop water management plans for seven main river basins(including Shkumbini River Basin),which have been established in the country according to the Decision No.696,date 30.10.2019.The main goal of this study was the development of an integrated hydrological and water management model to evaluate the climate and development scenarios for the Shkumbini River Basin.The study applies the software WEAP(Water Evaluation and Planning)by SEI(Stockholm Environment Institute)to simulate and analyze a set of hydro-ecological and socio-economical scenarios in the Shkumbini River to identify its fundamental vulnerabilities to climate change between the years 2017-2050.Understanding specific vulnerabilities within a basin allows planners to propose and prioritize potential adaptation measures,which can be further examined with cost-benefit analyses.The spatially-based models can incorporate climatic and land use conditions that determine water supply,and this allows the model to investigate diverse changes within the system to consider the various outcomes of uncertain futures,whether climatic,managerial,infrastructural or demographic.
基金Supported by Project of the National Natural Science Foundation of China(No.41274055)
文摘When cause of the aliasing lack probl using borehole sensors and microseimic events to image, spatial aliasing often occurred be- of sensors underground and the distance between the sensors which were too large. To solve em, data reconstruction is often needed. Curvelet transform sparsity constrained inversion was widely used in the seismic data reconstruction field for its anisotropic, muhiscale and local basis. However, for the downhole ease, because the number of sampling point is mueh larger than the number of the sensors, the advantage of the cnrvelet basis can't perform very well. To mitigate the problem, the method that joints spline and curvlet-based compressive sensing was proposed. First, we applied the spline interpolation to the first arri- vals that to be interpolated. And the events are moved to a certain direction, such as horizontal, which can be represented by the curvelet basis sparsely. Under the spasity condition, curvelet-based compressive sensing was applied for the data, and directional filter was also used to mute the near vertical noises. After that, the events were shifted to the spline line to finish the interpolation workflow. The method was applied to a synthetic mod- el, and better result was presented than using curvelet transform interpolation directly. We applied the method to a real dataset, a mieroseismic downhole observation field data in Nanyang, using Kirchhoff migration method to image the microseimic event. Compared with the origin data, artifacts were suppressed on a certain degree.
基金This project is supported by National Natural Science Foundation of China (No.50405009)
文摘In order to realize visualization of three-dimensional data field (TDDF) in instrument, two methods of visualization of TDDF and the usual manner of quick graphic and image processing are analyzed. And how to use OpenGL technique and the characteristic of analyzed data to construct a TDDF, the ways of reality processing and interactive processing are described. Then the medium geometric element and a related realistic model are constructed by means of the first algorithm. Models obtained for attaching the third dimension in three-dimensional data field are presented. An example for TDDF realization of machine measuring is provided. The analysis of resultant graphic indicates that the three-dimensional graphics built by the method developed is featured by good reality, fast processing and strong interaction