Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials ...Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method(VFM) is applied to characterize all the mechanical parameters(Q, Q, Q, Q) using the full-field strain,which is measured by digital image correlation(DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method(FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30?. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters(Q, Q, Q, Q) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants(Q, Q, Q, Q) were determined from the test with an angle of 27?.展开更多
The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation dur...The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation during the tests.In this study,splitting tests were performed on sea ice,with 32 samples subjected to the regular procedure and 8 samples subjected to the digital image correlation method.The salinity,density,and temperature were measured to determine the total porosity.With the advantage of the digital image correlation method,the full-field deformation of the ice samples could be determined.In the loading direction,the samples mainly deformed at the ice-platen contact area.In the direction vertical to the loading,deformation appears along the central line where the splitting crack occurs.Based on the distribution of the sample deformation,a modified solution was derived to calculate the tensile strength with the maximum load.Based on the modified solution,the tensile strength was further calculated together with the splitting test results.The results show that the tensile strength has a negative correlation with the total porosity,which agrees with previous studies based on uniaxial tension tests.展开更多
Three dimensional-digital image correlation (3D-DIC) is a widely used optical metrology in the experimental mechanics community because of its reliability, practicality, and flexibility. Although the precision of di...Three dimensional-digital image correlation (3D-DIC) is a widely used optical metrology in the experimental mechanics community because of its reliability, practicality, and flexibility. Although the precision of digital image correlation (DIC) has been thoroughly studied theoretically and numerically, verification experiments have seldom been performed, especially fbr complex surfaces with a small field of view (FOV). In this work, the shape of a 1-yuan coin was measured using 3D-DIC; the shape was complex due to the presence of many fine details, and the FOV was relatively small because the coin diameter was only 25 mm. During the experiment, a novel strategy for speckle production was developed: white paint was simply sprayed onto the surface. Black paint was not used; instead, taking advantage of the reflective nature of the coin surface, polarized light and a Polaroid filter were introduced, and the polarization direction was carefully adjusted, ensuring that the spray pattern was extremely thin and that high-quality speckle images with significant contrast were captured. The three-dimensional coin shape was also successfully determined for comparison using a stylus profiler. The results demonstrate that 3D-DIC provides high precision in shape measurement even for complex surfaces with small FOV. The precision of 3D-DIC can reach 1/7000 of the field of view, corresponding to about 6 ~tm in this experiment.展开更多
The study on the deformation distribution and crack propagation of concrete under axial compression was conducted by the digital image correlation (DIC) method. The main parameter in this test is the water-cement (fT/...The study on the deformation distribution and crack propagation of concrete under axial compression was conducted by the digital image correlation (DIC) method. The main parameter in this test is the water-cement (fT/C) ratio. The novel analysis process and numerical program for DIC method were established. The displacements and strains of coarse aggregate, and cement mortar and interface transition zone (ITZ) were obtained and verified by experimental results. It was found that the axial displacement distributed non-uniformly during the loading stage, and the axial displacements of ITZs and cement mortar were larger than that of coarse aggregates before the occurrence of macrocracks. The effect of W/C on the horizontal displacement was not obvious. Test results also showed that the transverse and shear deformation concentration areas (DCAs) were formed when stress reached 30%-40% of the peak stress. The transverse and shear DCAs crossed the cement mortar, and ITZs and coarse aggregates. However, the axial DCA mainly surrounded the coarse aggregate. Generally, the higher W/C was, the more size and number of DCAs were. The crack propagations of specimens varied with the variation of W/C. The micro-crack of concrete mainly initiated in the ITZs, irrespective of the W/C. The number and distribution range of cracks in concrete with high W/C were larger than those of cracks in specimen adopting low W/C. However, the value and width of eraeks in high W/C specimen were relatively small. The W/C had an obvious effect on the characteristics of concrete deterioration. Finally, the characteristics of crack was also evaluated by comparing the calculated results.展开更多
We present a global optimization method, called the genetic algorithms (GAs), for digital image/speckle correlation (DISC). The new algorithms do not involve reasonable initial guess of displacement and deformation gr...We present a global optimization method, called the genetic algorithms (GAs), for digital image/speckle correlation (DISC). The new algorithms do not involve reasonable initial guess of displacement and deformation gradient and the calculation of second-order spatial derivatives of the digital images, which are important challenges in practical implementation of DISC. The performance of a GA depends largely on the selection of the genetic operators. We test various operators and propose optimal operators. The algorithms are then verified using simulated images and experimental speckle images.展开更多
This paper presents an incremental cutting method for evaluating the longitudinal residual stresses in a butt welded thin plate via combining the traditional residual stress measurement methods and the advanced optica...This paper presents an incremental cutting method for evaluating the longitudinal residual stresses in a butt welded thin plate via combining the traditional residual stress measurement methods and the advanced optical technique.The proposed approach,which can be called digital image correlation(DIC)-aided slitting technique,introduces a successive extension slot to a specimen and employs the DIC technique to measure the released displacement profiles of the cutting sections after each cutting increment.Then the displacement profiles are used to directly calculate the residual stress distributions up to the slot tip and hence,a stress distribution can be obtained after a cutting increment.Finally,all of the stress distributions are averaged to ultimately determine the original residual stress field.This method does not include any complex experimental operations or tedious derivation,and the resolution of stress variation is greatly improved by the continuous measurement of the released displacements.The presented method has been preliminarily verified by a specimen with residual stress introduced by a four-point bending test.The results show that residual stresses determined by the DIC-aided slitting technique agree well with those from finite element(FE) prediction.The residual stress in a friction stir welded aluminum specimen obtained by the presented technique is also consistent with the evaluations given by X-ray diffraction.Furthermore,the residual stresses obtained by the DIC-aided slitting technique demonstrate higher accuracy and stability than the evaluations derived by the DIC-aided contour method.展开更多
In this paper the elastic constants of graphite at elevated temperature were experimentally investigated by using the virtual fields method (VFM). A new method was presented for the characterization of mechanical pr...In this paper the elastic constants of graphite at elevated temperature were experimentally investigated by using the virtual fields method (VFM). A new method was presented for the characterization of mechanical properties at elevated temperature. The three-point bending tests were performed on graphite materials by an universal testing machine equipped with heating fumace. Based on the heterogeneous deformation fields measured by the digital image correlation (DIC) technique, the elastic constants were then extracted by using VFM. The measurement results of the elastic constants at 500℃ were obtained. The ef- fect on the experimental results was also analyzed. The successful results verify the feasibility of using the proposed method to measure the properties of graphite at high temperature, and the proposed method is believed to have a good potential for further applications.展开更多
In the digital image correlation research of fatigue crack growth rate,the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor,thereby affecting the life predic...In the digital image correlation research of fatigue crack growth rate,the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor,thereby affecting the life prediction.This paper proposes a Gauss-Newton iteration method for solving the crack tip position.The conventional linear fitting method provides an iterative initial solution for this method,and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix.A noise-added artificial displacement field is used to verify the feasibility of the method,which shows that all parameters can be solved with satisfactory results.The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result,and the relative error between the two is only−0.621%;The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip,and the maximum relative error with the test plastic zone area is−11.29%.The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%.The crack tip coordinates,stress intensity factors,and plastic zone contour changes in the loading and unloading phases are explored.The results show that the crack tip change during the loading process is faster than the change during the unloading process;the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process;under the same load,the theoretical plastic zone during the unloading process is higher than that during the loading process.展开更多
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t...Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.展开更多
基金the financial support from the National Natural Science Foundation of China (Grants 11672153, 11232008, and 11227801)
文摘Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method(VFM) is applied to characterize all the mechanical parameters(Q, Q, Q, Q) using the full-field strain,which is measured by digital image correlation(DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method(FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30?. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters(Q, Q, Q, Q) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants(Q, Q, Q, Q) were determined from the test with an angle of 27?.
基金This study was supported financially by the National Key Research and Development Program of China(Grant no.2018YFA0605902)the National Natural Science Foundation of China(Grant no.52101300)+1 种基金the Fundamental Research Funds for the Central Universities(Grant no.DUT21LK03)Joint Scientific Research Fund Project of DBJI(Grant no.ICR2102).
文摘The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation during the tests.In this study,splitting tests were performed on sea ice,with 32 samples subjected to the regular procedure and 8 samples subjected to the digital image correlation method.The salinity,density,and temperature were measured to determine the total porosity.With the advantage of the digital image correlation method,the full-field deformation of the ice samples could be determined.In the loading direction,the samples mainly deformed at the ice-platen contact area.In the direction vertical to the loading,deformation appears along the central line where the splitting crack occurs.Based on the distribution of the sample deformation,a modified solution was derived to calculate the tensile strength with the maximum load.Based on the modified solution,the tensile strength was further calculated together with the splitting test results.The results show that the tensile strength has a negative correlation with the total porosity,which agrees with previous studies based on uniaxial tension tests.
基金supported by the National Natural Science Foundation of China(Grant Nos.11332010,51271174,11372300,11127201,11472266&11428206)
文摘Three dimensional-digital image correlation (3D-DIC) is a widely used optical metrology in the experimental mechanics community because of its reliability, practicality, and flexibility. Although the precision of digital image correlation (DIC) has been thoroughly studied theoretically and numerically, verification experiments have seldom been performed, especially fbr complex surfaces with a small field of view (FOV). In this work, the shape of a 1-yuan coin was measured using 3D-DIC; the shape was complex due to the presence of many fine details, and the FOV was relatively small because the coin diameter was only 25 mm. During the experiment, a novel strategy for speckle production was developed: white paint was simply sprayed onto the surface. Black paint was not used; instead, taking advantage of the reflective nature of the coin surface, polarized light and a Polaroid filter were introduced, and the polarization direction was carefully adjusted, ensuring that the spray pattern was extremely thin and that high-quality speckle images with significant contrast were captured. The three-dimensional coin shape was also successfully determined for comparison using a stylus profiler. The results demonstrate that 3D-DIC provides high precision in shape measurement even for complex surfaces with small FOV. The precision of 3D-DIC can reach 1/7000 of the field of view, corresponding to about 6 ~tm in this experiment.
基金The authors gratefully acknowledge the support by the National Natural Science Foundation of China (Grant No. 51408346)the Taishan Scholarship Project of Shandong Province (No. tshw20130956)the China Postdoctoral Science Foundation Funded Project (Nos. 2015M572584, 2016T0914).
文摘The study on the deformation distribution and crack propagation of concrete under axial compression was conducted by the digital image correlation (DIC) method. The main parameter in this test is the water-cement (fT/C) ratio. The novel analysis process and numerical program for DIC method were established. The displacements and strains of coarse aggregate, and cement mortar and interface transition zone (ITZ) were obtained and verified by experimental results. It was found that the axial displacement distributed non-uniformly during the loading stage, and the axial displacements of ITZs and cement mortar were larger than that of coarse aggregates before the occurrence of macrocracks. The effect of W/C on the horizontal displacement was not obvious. Test results also showed that the transverse and shear deformation concentration areas (DCAs) were formed when stress reached 30%-40% of the peak stress. The transverse and shear DCAs crossed the cement mortar, and ITZs and coarse aggregates. However, the axial DCA mainly surrounded the coarse aggregate. Generally, the higher W/C was, the more size and number of DCAs were. The crack propagations of specimens varied with the variation of W/C. The micro-crack of concrete mainly initiated in the ITZs, irrespective of the W/C. The number and distribution range of cracks in concrete with high W/C were larger than those of cracks in specimen adopting low W/C. However, the value and width of eraeks in high W/C specimen were relatively small. The W/C had an obvious effect on the characteristics of concrete deterioration. Finally, the characteristics of crack was also evaluated by comparing the calculated results.
基金This work was supported by 985 Education Development Plan of Tianjin University
文摘We present a global optimization method, called the genetic algorithms (GAs), for digital image/speckle correlation (DISC). The new algorithms do not involve reasonable initial guess of displacement and deformation gradient and the calculation of second-order spatial derivatives of the digital images, which are important challenges in practical implementation of DISC. The performance of a GA depends largely on the selection of the genetic operators. We test various operators and propose optimal operators. The algorithms are then verified using simulated images and experimental speckle images.
基金supported by the National Natural Science Foundation of China(No.11272029)
文摘This paper presents an incremental cutting method for evaluating the longitudinal residual stresses in a butt welded thin plate via combining the traditional residual stress measurement methods and the advanced optical technique.The proposed approach,which can be called digital image correlation(DIC)-aided slitting technique,introduces a successive extension slot to a specimen and employs the DIC technique to measure the released displacement profiles of the cutting sections after each cutting increment.Then the displacement profiles are used to directly calculate the residual stress distributions up to the slot tip and hence,a stress distribution can be obtained after a cutting increment.Finally,all of the stress distributions are averaged to ultimately determine the original residual stress field.This method does not include any complex experimental operations or tedious derivation,and the resolution of stress variation is greatly improved by the continuous measurement of the released displacements.The presented method has been preliminarily verified by a specimen with residual stress introduced by a four-point bending test.The results show that residual stresses determined by the DIC-aided slitting technique agree well with those from finite element(FE) prediction.The residual stress in a friction stir welded aluminum specimen obtained by the presented technique is also consistent with the evaluations given by X-ray diffraction.Furthermore,the residual stresses obtained by the DIC-aided slitting technique demonstrate higher accuracy and stability than the evaluations derived by the DIC-aided contour method.
基金supported by the National Natural Science Foundation of China(11232008,91216301,11227801,and 11172151)the Tsinghua University Initiative Scientific Research Program,and the Major Basic Research Program of Beijing Institute of Technology(2011CX01030)
文摘In this paper the elastic constants of graphite at elevated temperature were experimentally investigated by using the virtual fields method (VFM). A new method was presented for the characterization of mechanical properties at elevated temperature. The three-point bending tests were performed on graphite materials by an universal testing machine equipped with heating fumace. Based on the heterogeneous deformation fields measured by the digital image correlation (DIC) technique, the elastic constants were then extracted by using VFM. The measurement results of the elastic constants at 500℃ were obtained. The ef- fect on the experimental results was also analyzed. The successful results verify the feasibility of using the proposed method to measure the properties of graphite at high temperature, and the proposed method is believed to have a good potential for further applications.
基金Supported by National Natural Science Foundation of China(Grant No.51675446)Independent Research Project of State Key Laboratory of Traction Power(Grant No.2019TPL-T13).
文摘In the digital image correlation research of fatigue crack growth rate,the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor,thereby affecting the life prediction.This paper proposes a Gauss-Newton iteration method for solving the crack tip position.The conventional linear fitting method provides an iterative initial solution for this method,and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix.A noise-added artificial displacement field is used to verify the feasibility of the method,which shows that all parameters can be solved with satisfactory results.The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result,and the relative error between the two is only−0.621%;The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip,and the maximum relative error with the test plastic zone area is−11.29%.The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%.The crack tip coordinates,stress intensity factors,and plastic zone contour changes in the loading and unloading phases are explored.The results show that the crack tip change during the loading process is faster than the change during the unloading process;the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process;under the same load,the theoretical plastic zone during the unloading process is higher than that during the loading process.
基金support from the National Natural Science Foundation of China (Grant No.42207199)Zhejiang Provincial Postdoctoral Science Foundation (Grant Nos.ZJ2022155 and ZJ2022156).
文摘Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.