A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the ...A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the two contacted surfaces of the crack must be satisfied.A simple iterative method was adopted in order to consider three different states of cracks.Under the assumption that the advance of the point on the crack front would occur only in the normal plane which is through this edge point,the maximum energy release rate criterion is modified to be used as the criterion for the crack growth.With discretization,the process of crack propagation can be seen as the advance of the vertices of the crack front.The program MCP3D was developed based on these theories to simulate the 3D quasi-static crack propagation.A numerical example of a penny-shaped crack subject to tension and compression in an infinite elastic media was analyzed with MCP3D,and the results in comparison with others' show that the present method for 3D crack propagation is effective.展开更多
In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the ...In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. There- fore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anas- tomosis after autologous nerve grafting.展开更多
This paper proposed a method of injection-production system adjustment to solve the problem that the water flooding effect was restricted because of the horizontal and vertical contradictions during the development pr...This paper proposed a method of injection-production system adjustment to solve the problem that the water flooding effect was restricted because of the horizontal and vertical contradictions during the development process of fault block reservoirs. Considering the heterogeneity of reservoir, the Buckley-Leverett water flooding theory was applied to establish the relationship between the recovery and cumulative water injection. In order to achieve the goal of vertically balanced recovery of each section, the calculation method of vertical sectional injection allocation was proposed. The planar triangular seepage unit was assumed and sweep coefficients of different oil-water distribution patterns were characterized using multi-flow tube method. In order to balance and maximize the plane sweep coefficient, the calculation method of plane production system optimization was obtained. Then the injection-production system stereoscopic adjustment method based on equilibrium displacement was proposed with vertical sectional injection allocation and plane production system optimization. This method was applied to injection and production adjustment of BZ oilfield in southern Bohai. The effect of water control and oil increase was obvious. This method can greatly improve the effect of water flooding of offshore fault block reservoirs with the adjustment of injection-production system.展开更多
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topolo...In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.展开更多
Streamline-adjustment-assisted heterogeneous combination flooding is a new technology for enhanced oil recovery for post-polymer-flooded reservoirs.In this work,we first carried out a series of 2D visualization experi...Streamline-adjustment-assisted heterogeneous combination flooding is a new technology for enhanced oil recovery for post-polymer-flooded reservoirs.In this work,we first carried out a series of 2D visualization experiments for different chemical flooding scenarios after polymer flooding.Then,we explored the synergistic mechanisms of streamline-adjustment-assisted heterogeneous combination flooding for enhanced oil recovery and the contribution of each component.Test results show that for single heterogeneous combination flooding,the residual oil in the main streamline area after polymer flooding is ready to be driven,but it is difficult to be recovered in the non-main streamline area.Due to the effect of drainage and synergism,the streamline-adjustment-assisted heterogeneous combination flooding diverts the injected chemical agent from the main streamline area to the non-main streamline area,which consequently expands the active area of chemical flooding.Based on the results from the single-factor contribution of the quantitative analysis,the contribution of temporary plugging and profile control of branched preformed particle gels ranks in the first place and followed by the polymer profile control and the effect of streamline adjustment.On the contrary,the surfactant contributes the least to enhance the efficiency of oil displacement.展开更多
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
In mountainous areas,landslides induced by destructive earthquakes are one of the main causes of human casualties,which is an important link in the chain of earthquake hazards.Earthquake-triggered landslides are mainl...In mountainous areas,landslides induced by destructive earthquakes are one of the main causes of human casualties,which is an important link in the chain of earthquake hazards.Earthquake-triggered landslides are mainly controlled by three factors,namely seismic property,topography,and geology.Many studies have been conducted on these controlling factors of earthquake-triggered landslides.However,little is known about the effect of coseismic displacement on the distribution of landslides under different slope aspects and slope angles,hindering our understanding of the mechanism of inducing landslides by the combination of surface displacement and slope geometry at the local scale and leading to controversial opinions about the abnormal number of earthquake-triggered landslides in several cases.Here,we took the 2008 Wenchuan M_(w) 7.9 earthquake in China,the 2015 Gorkha M_(w) 7.8 earthquake in Nepal,and the 2016 Kaikōura M_(w) 7.8 earthquake in New Zealand as examples to investigate the relationship between the distribution of large earthquake-triggered landslides and the three-dimensional (3D)coseismic displacement field.We divided the landslide-prone area around the epicenter into regular grids and calculated the 3D coseismic displacement in each grid according to the radar satellite images and slip distribution model.Then,the 3D coseismic displacement was projected to two coordinate systems related to the slope where the landslides were located for statistical analysis.We determined that the surface uplift perpendicular to the slope is more likely to induce landslides,particularly when combined with large slope angles.Meanwhile,the number of landslides will be significantly reduced where the subsidence occurs.Regardless of uplift or subsidence,landslides are more likely to occur when the direction of coseismic horizontal displacement is far from the slope.The larger the slope angles are,the greater the effects of horizontal displacement and slope aspect.A dominant slope aspect also exists for earthquake-triggered landslides,which is different from the mean slope aspect calculated from the background topography.This dominant aspect angle is related to the focal mechanism and striking angle of surface rupture.These results indicate that we can simulate the 3D coseismic displacement field from known fault location and earthquake mechanism and combine the topographic data for landslide risk assessment in earthquake-prone mountainous areas to minimize the damage caused by possible earthquake-triggered landslides.展开更多
为解决原子力显微镜(Atomic Force Microscope,AFM)系统更换探针后光路调整复杂耗时、精度不足的问题,本文首次提出通过精密控制探针与探针夹装配位置来实现更换的探针相对AFM系统原光路位置的一致,进而实现免去AFM系统换针后调整光路...为解决原子力显微镜(Atomic Force Microscope,AFM)系统更换探针后光路调整复杂耗时、精度不足的问题,本文首次提出通过精密控制探针与探针夹装配位置来实现更换的探针相对AFM系统原光路位置的一致,进而实现免去AFM系统换针后调整光路步骤。该系统的光路一致性组件采用光束偏转法对探针位置与偏转进行放大与监测,并使用高精度位移与角度调节平台进行探针相对于探针夹的方位调整。通过实物搭建对探针一致性效果进行了验证,并对紫外光(Ultraviolet,UV)胶水固化过程导致探针位置偏移影响;探针不同偏移量时产生的探测器噪音对AFM系统成像质量影响进行了系统分析。实验结果表明:经由该系统装配的探针平均位置精度接近1.1μm;并且在AFM系统中更换一致性探针仅需8 s。该系统实现了高精度且质量稳定的探针一致性装配,极大地简化了AFM系统重新校准光路的操作步骤,其与自动换针装置配合可有效提升工业计量型AFM的操作与测量性能。展开更多
Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dime...Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits.The method is realized in three steps:(1) measuring surface displacements along the LOS directions of both ascending and descending orbits based on interferometric phases;(2) measuring surface displacements along the azimuth directions of both the ascending and descending orbits based on the SAR amplitude data;and(3) estimating the three-dimensional(3D) surface displacement field by combining the above four independent one-dimensional displacements using the method of least squares and Helmert variance component estimation.We apply the method to infer the 3D surface displacement field caused by the 2003 Bam,Iran,earthquake.The results reveal that in the northern part of Bam the ground surface experienced both subsidence and southwestward horizontal movement,while in the southern part uplift and southeastward horizontal movement occurred.The displacement field thus determined matches the location of the fault very well with the maximal displacements reaching 22,40,and 30 cm,respectively in the up,northing and easting directions.Finally,we compare the 3D displacement field with that simulated from the Okada model.The results demonstrate that the method presented here can be used to generate reliable and highly accurate 3D surface displacement fields.展开更多
Objective:This study investigated the effect of proximal contact strength on the three-dimensional displacements of cantilever fixed partial denture(CFPD) under vertically concentrated loading with digital laser speck...Objective:This study investigated the effect of proximal contact strength on the three-dimensional displacements of cantilever fixed partial denture(CFPD) under vertically concentrated loading with digital laser speckle(DLS) technique.Methods:Fresh mandible of beagle dog was used to establish the implant-supported CFPD for specimen.DLS technique was employed for measuring the three-dimensional displacement of the prosthesis under vertically concentrated loading ranging from 200 to 3 000 g.The effect of the contact tightness on the displacement of CFPD was investigated by means of changing the contact tightness.Results:When an axial concentrated loading was exerted on the pontic of the implant-supported CFPD,the displacement of the CFPD was the greatest.The displacement of the prosthesis decreased with the increase of contact strength.When the contact strength was 0,0.95,and 3.25 N,the displacement of the buccolingual direction was smaller than that of the mesiodistal direction but greater than that of the occlusogingival direction.When the force on the contact area was 6.50 N,the mesiodistal displacement of the prosthesis was the biggest while the buccolingual displacement was the smallest.Conclusions:The implant supported CFPD is an effective therapy for fully or partially edentulous patients.The restoration of the contact area and the selection of the appropriate contact strength can reduce the displacement of the CFPD,and get a better stress distribution.The most appropriate force value is 3.25 N in this study.展开更多
Sparse bundle adjustment(SBA) is a key but time-and memory-consuming step in three-dimensional(3 D) reconstruction. In this paper, we propose a 3 D point-based distributed SBA algorithm(DSBA) to improve the speed and ...Sparse bundle adjustment(SBA) is a key but time-and memory-consuming step in three-dimensional(3 D) reconstruction. In this paper, we propose a 3 D point-based distributed SBA algorithm(DSBA) to improve the speed and scalability of SBA. The algorithm uses an asynchronously distributed sparse bundle adjustment(A-DSBA)to overlap data communication with equation computation. Compared with the synchronous DSBA mechanism(SDSBA), A-DSBA reduces the running time by 46%. The experimental results on several 3 D reconstruction datasets reveal that our distributed algorithm running on eight nodes is up to five times faster than that of the stand-alone parallel SBA. Furthermore, the speedup of the proposed algorithm(running on eight nodes with 48 cores) is up to41 times that of the serial SBA(running on a single node).展开更多
This paper presents a new optical interferometric system, MMI-T/G, composed of a modified four-beam moire interferometer and a Twyman/Green interferometer. The MMI-T/G system can measure three-dimensional displacement...This paper presents a new optical interferometric system, MMI-T/G, composed of a modified four-beam moire interferometer and a Twyman/Green interferometer. The MMI-T/G system can measure three-dimensional displacement fringe patterns with a single loading on the specimen, and the in-plane and out-of-plane displacement fields can be measured independently and defined clearly. The optical setup has the advantages of structural novelty, flexibility, and high fringe contrast. Moreover, the in-plane displacement sensitivity is twice of that of the normal moire interferometer. The measuring techniques to obtain the fringe patterns and displacement fields using the MMI-T/G system are described. The experimental results of thermal displacement of an electronic device are shown.展开更多
NUMERICAL simulation of the two-phase (oil and water) displacement problem is the mathematical basis of energy sources. For two-dimensional positive problem, Douglas et al. put forward the well-known characteristic fi...NUMERICAL simulation of the two-phase (oil and water) displacement problem is the mathematical basis of energy sources. For two-dimensional positive problem, Douglas et al. put forward the well-known characteristic finite difference method and characteristic finite element method. However, for numerical analysis there exist some difficulties. They assumed that the problem is periodic and the diffusion matrix of the concentration equation is positive difinite展开更多
Background Currently,laser tracker is the primary instrument used to carry out three-dimensional position measurement in accelerator alignment.Theoretically,three-dimensional measuring data processed by three-dimensio...Background Currently,laser tracker is the primary instrument used to carry out three-dimensional position measurement in accelerator alignment.Theoretically,three-dimensional measuring data processed by three-dimensional adjustment are more rigorous,however,error accumulation is found in practice.Purpose In order to control error accumulation and further improve the measurement accuracy of accelerator alignment,this research introduces the laser alignment system into the activity of measurement and data processing.Methods A measurement scheme combining laser tracker and laser alignment system is proposed.To construct the constraint condition,the offset values from the measuring points to the laser straight-line datum were used.To carry out the three-dimensional adjustment with offset constraint,the laser tracker observations were used.Results A three-dimensional adjustment function model of laser tracker observations is given.The construction method of the constraint equation is researched,and the calculation formulas of the three-dimensional adjustment with offset constraint are derived.A 200 m linac tunnel control network is designed,using simulation measurement method,the measuring data of laser tracker and the offset values from the measuring points to the laser straight-line datum were generated.The simulated data are calculated by the method given in this paper and the result is analyzed.Conclusion Simulation result shows introducing the laser alignment system into laser tracker measurement and applying the three-dimensional adjustment with offset constraint can effectively suppress the error accumulation caused by long distance move station measurement.展开更多
文摘A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the two contacted surfaces of the crack must be satisfied.A simple iterative method was adopted in order to consider three different states of cracks.Under the assumption that the advance of the point on the crack front would occur only in the normal plane which is through this edge point,the maximum energy release rate criterion is modified to be used as the criterion for the crack growth.With discretization,the process of crack propagation can be seen as the advance of the vertices of the crack front.The program MCP3D was developed based on these theories to simulate the 3D quasi-static crack propagation.A numerical example of a penny-shaped crack subject to tension and compression in an infinite elastic media was analyzed with MCP3D,and the results in comparison with others' show that the present method for 3D crack propagation is effective.
基金supported by the Science and Technology Development Project of Jilin Province in China,No.20110492
文摘In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. There- fore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anas- tomosis after autologous nerve grafting.
文摘This paper proposed a method of injection-production system adjustment to solve the problem that the water flooding effect was restricted because of the horizontal and vertical contradictions during the development process of fault block reservoirs. Considering the heterogeneity of reservoir, the Buckley-Leverett water flooding theory was applied to establish the relationship between the recovery and cumulative water injection. In order to achieve the goal of vertically balanced recovery of each section, the calculation method of vertical sectional injection allocation was proposed. The planar triangular seepage unit was assumed and sweep coefficients of different oil-water distribution patterns were characterized using multi-flow tube method. In order to balance and maximize the plane sweep coefficient, the calculation method of plane production system optimization was obtained. Then the injection-production system stereoscopic adjustment method based on equilibrium displacement was proposed with vertical sectional injection allocation and plane production system optimization. This method was applied to injection and production adjustment of BZ oilfield in southern Bohai. The effect of water control and oil increase was obvious. This method can greatly improve the effect of water flooding of offshore fault block reservoirs with the adjustment of injection-production system.
基金supported by the National Natural Science Foundation of China (10872036)the High Technological Research and Development Program of China (2008AA04Z118)the Airspace Natural Science Foundation (2007ZA23007)
文摘In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.
基金financial support from the National Natural Science Foundation of China (Grant No. 51574269)the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51625403)+3 种基金the Important National Science and Technology Specific Projects of China (Grant No. 2016ZX05025-003)the Fundamental Research Funds for the Central Universities (Grant No. 15CX08004A, 18CX02169A)China Postdoctoral Science Foundation (Grant No. 2017M622319)the Natural Science Foundation of Shandong Province (Grant No. ZR2018BEE004)
文摘Streamline-adjustment-assisted heterogeneous combination flooding is a new technology for enhanced oil recovery for post-polymer-flooded reservoirs.In this work,we first carried out a series of 2D visualization experiments for different chemical flooding scenarios after polymer flooding.Then,we explored the synergistic mechanisms of streamline-adjustment-assisted heterogeneous combination flooding for enhanced oil recovery and the contribution of each component.Test results show that for single heterogeneous combination flooding,the residual oil in the main streamline area after polymer flooding is ready to be driven,but it is difficult to be recovered in the non-main streamline area.Due to the effect of drainage and synergism,the streamline-adjustment-assisted heterogeneous combination flooding diverts the injected chemical agent from the main streamline area to the non-main streamline area,which consequently expands the active area of chemical flooding.Based on the results from the single-factor contribution of the quantitative analysis,the contribution of temporary plugging and profile control of branched preformed particle gels ranks in the first place and followed by the polymer profile control and the effect of streamline adjustment.On the contrary,the surfactant contributes the least to enhance the efficiency of oil displacement.
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
基金provided by the Japan Aerospace Exploration Agency through the research project PER3A2N162supported by the National Natural Science Foundation of China (Grant Nos.42021003 and 41974017)。
文摘In mountainous areas,landslides induced by destructive earthquakes are one of the main causes of human casualties,which is an important link in the chain of earthquake hazards.Earthquake-triggered landslides are mainly controlled by three factors,namely seismic property,topography,and geology.Many studies have been conducted on these controlling factors of earthquake-triggered landslides.However,little is known about the effect of coseismic displacement on the distribution of landslides under different slope aspects and slope angles,hindering our understanding of the mechanism of inducing landslides by the combination of surface displacement and slope geometry at the local scale and leading to controversial opinions about the abnormal number of earthquake-triggered landslides in several cases.Here,we took the 2008 Wenchuan M_(w) 7.9 earthquake in China,the 2015 Gorkha M_(w) 7.8 earthquake in Nepal,and the 2016 Kaikōura M_(w) 7.8 earthquake in New Zealand as examples to investigate the relationship between the distribution of large earthquake-triggered landslides and the three-dimensional (3D)coseismic displacement field.We divided the landslide-prone area around the epicenter into regular grids and calculated the 3D coseismic displacement in each grid according to the radar satellite images and slip distribution model.Then,the 3D coseismic displacement was projected to two coordinate systems related to the slope where the landslides were located for statistical analysis.We determined that the surface uplift perpendicular to the slope is more likely to induce landslides,particularly when combined with large slope angles.Meanwhile,the number of landslides will be significantly reduced where the subsidence occurs.Regardless of uplift or subsidence,landslides are more likely to occur when the direction of coseismic horizontal displacement is far from the slope.The larger the slope angles are,the greater the effects of horizontal displacement and slope aspect.A dominant slope aspect also exists for earthquake-triggered landslides,which is different from the mean slope aspect calculated from the background topography.This dominant aspect angle is related to the focal mechanism and striking angle of surface rupture.These results indicate that we can simulate the 3D coseismic displacement field from known fault location and earthquake mechanism and combine the topographic data for landslide risk assessment in earthquake-prone mountainous areas to minimize the damage caused by possible earthquake-triggered landslides.
文摘为解决原子力显微镜(Atomic Force Microscope,AFM)系统更换探针后光路调整复杂耗时、精度不足的问题,本文首次提出通过精密控制探针与探针夹装配位置来实现更换的探针相对AFM系统原光路位置的一致,进而实现免去AFM系统换针后调整光路步骤。该系统的光路一致性组件采用光束偏转法对探针位置与偏转进行放大与监测,并使用高精度位移与角度调节平台进行探针相对于探针夹的方位调整。通过实物搭建对探针一致性效果进行了验证,并对紫外光(Ultraviolet,UV)胶水固化过程导致探针位置偏移影响;探针不同偏移量时产生的探测器噪音对AFM系统成像质量影响进行了系统分析。实验结果表明:经由该系统装配的探针平均位置精度接近1.1μm;并且在AFM系统中更换一致性探针仅需8 s。该系统实现了高精度且质量稳定的探针一致性装配,极大地简化了AFM系统重新校准光路的操作步骤,其与自动换针装置配合可有效提升工业计量型AFM的操作与测量性能。
基金supported by National Natural Science Foundation of China (Grant Nos.40774003 and 40974006)National High Technology Research and Development Program of China (Grant No.2006AA12Z156)+3 种基金Program for New Century Excellent Talents in Universities (Grant No.NCET-08-0570)the Project of Western China 1:50000 Topography Mappingthe Project of Doctoral Dissertation Innovation (Grant No.2008yb046)the Sustentation Fund of the Excellent Doctoral Dissertation (Grant No.1960-71131100022) of Central South University
文摘Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits.The method is realized in three steps:(1) measuring surface displacements along the LOS directions of both ascending and descending orbits based on interferometric phases;(2) measuring surface displacements along the azimuth directions of both the ascending and descending orbits based on the SAR amplitude data;and(3) estimating the three-dimensional(3D) surface displacement field by combining the above four independent one-dimensional displacements using the method of least squares and Helmert variance component estimation.We apply the method to infer the 3D surface displacement field caused by the 2003 Bam,Iran,earthquake.The results reveal that in the northern part of Bam the ground surface experienced both subsidence and southwestward horizontal movement,while in the southern part uplift and southeastward horizontal movement occurred.The displacement field thus determined matches the location of the fault very well with the maximal displacements reaching 22,40,and 30 cm,respectively in the up,northing and easting directions.Finally,we compare the 3D displacement field with that simulated from the Okada model.The results demonstrate that the method presented here can be used to generate reliable and highly accurate 3D surface displacement fields.
文摘Objective:This study investigated the effect of proximal contact strength on the three-dimensional displacements of cantilever fixed partial denture(CFPD) under vertically concentrated loading with digital laser speckle(DLS) technique.Methods:Fresh mandible of beagle dog was used to establish the implant-supported CFPD for specimen.DLS technique was employed for measuring the three-dimensional displacement of the prosthesis under vertically concentrated loading ranging from 200 to 3 000 g.The effect of the contact tightness on the displacement of CFPD was investigated by means of changing the contact tightness.Results:When an axial concentrated loading was exerted on the pontic of the implant-supported CFPD,the displacement of the CFPD was the greatest.The displacement of the prosthesis decreased with the increase of contact strength.When the contact strength was 0,0.95,and 3.25 N,the displacement of the buccolingual direction was smaller than that of the mesiodistal direction but greater than that of the occlusogingival direction.When the force on the contact area was 6.50 N,the mesiodistal displacement of the prosthesis was the biggest while the buccolingual displacement was the smallest.Conclusions:The implant supported CFPD is an effective therapy for fully or partially edentulous patients.The restoration of the contact area and the selection of the appropriate contact strength can reduce the displacement of the CFPD,and get a better stress distribution.The most appropriate force value is 3.25 N in this study.
基金Project supported by the National Natural Science Foundation of China(Nos.U1435219,U1435222,and 61572515)the National Key R&D Program of China(No.2016YFB0200401)the Major Research Plan of the National Key R&D Program of China(No.2016YFC0901600)
文摘Sparse bundle adjustment(SBA) is a key but time-and memory-consuming step in three-dimensional(3 D) reconstruction. In this paper, we propose a 3 D point-based distributed SBA algorithm(DSBA) to improve the speed and scalability of SBA. The algorithm uses an asynchronously distributed sparse bundle adjustment(A-DSBA)to overlap data communication with equation computation. Compared with the synchronous DSBA mechanism(SDSBA), A-DSBA reduces the running time by 46%. The experimental results on several 3 D reconstruction datasets reveal that our distributed algorithm running on eight nodes is up to five times faster than that of the stand-alone parallel SBA. Furthermore, the speedup of the proposed algorithm(running on eight nodes with 48 cores) is up to41 times that of the serial SBA(running on a single node).
基金The authors are grateful to the financial support by the Science and Technology Development Foundation, Education Commission of Beijing, P. R. China (No. 00KJ-094).
文摘This paper presents a new optical interferometric system, MMI-T/G, composed of a modified four-beam moire interferometer and a Twyman/Green interferometer. The MMI-T/G system can measure three-dimensional displacement fringe patterns with a single loading on the specimen, and the in-plane and out-of-plane displacement fields can be measured independently and defined clearly. The optical setup has the advantages of structural novelty, flexibility, and high fringe contrast. Moreover, the in-plane displacement sensitivity is twice of that of the normal moire interferometer. The measuring techniques to obtain the fringe patterns and displacement fields using the MMI-T/G system are described. The experimental results of thermal displacement of an electronic device are shown.
文摘NUMERICAL simulation of the two-phase (oil and water) displacement problem is the mathematical basis of energy sources. For two-dimensional positive problem, Douglas et al. put forward the well-known characteristic finite difference method and characteristic finite element method. However, for numerical analysis there exist some difficulties. They assumed that the problem is periodic and the diffusion matrix of the concentration equation is positive difinite
基金Funding was provided by Young Scientists Fund(Grant no.12075264).
文摘Background Currently,laser tracker is the primary instrument used to carry out three-dimensional position measurement in accelerator alignment.Theoretically,three-dimensional measuring data processed by three-dimensional adjustment are more rigorous,however,error accumulation is found in practice.Purpose In order to control error accumulation and further improve the measurement accuracy of accelerator alignment,this research introduces the laser alignment system into the activity of measurement and data processing.Methods A measurement scheme combining laser tracker and laser alignment system is proposed.To construct the constraint condition,the offset values from the measuring points to the laser straight-line datum were used.To carry out the three-dimensional adjustment with offset constraint,the laser tracker observations were used.Results A three-dimensional adjustment function model of laser tracker observations is given.The construction method of the constraint equation is researched,and the calculation formulas of the three-dimensional adjustment with offset constraint are derived.A 200 m linac tunnel control network is designed,using simulation measurement method,the measuring data of laser tracker and the offset values from the measuring points to the laser straight-line datum were generated.The simulated data are calculated by the method given in this paper and the result is analyzed.Conclusion Simulation result shows introducing the laser alignment system into laser tracker measurement and applying the three-dimensional adjustment with offset constraint can effectively suppress the error accumulation caused by long distance move station measurement.