In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are ...In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are connected either directly or through some intermediate devices.These terminating and intermediate devices are considered as vertices of graph whereas wired or wireless connections among these devices are shown as edges of graph.Topological indices are used to reflect structural property of graphs in form of one real number.This structural invariant has revolutionized the field of chemistry to identify molecular descriptors of chemical compounds.These indices are extensively used for establishing relationships between the structure of nanotubes and their physico-chemical properties.In this paper a representation of sodium chloride(NaCl)is studied,because structure of NaCl is same as the Cartesian product of three paths of length exactly like a mesh network.In this way the general formula obtained in this paper can be used in chemistry as well as for any degree-based topological polynomials of three-dimensional mesh networks.展开更多
Using unstructured meshes provides great flexibility for modeling the flow in complex geomorphology of tidal creeks,barriers and islands,with refined grid resolution in regions of interest and not elsewhere.In this pa...Using unstructured meshes provides great flexibility for modeling the flow in complex geomorphology of tidal creeks,barriers and islands,with refined grid resolution in regions of interest and not elsewhere.In this paper,an unstructured three-dimensional fully coupled wave-current model is developed.Firstly,a parallel,unstructured wave module is developed.Variations in wave properties are governed by a wave energy equation that includes wave-current interactions and dissipation representative of wave breaking.Then,the existing Finite-Volume Coastal Ocean Model(FVCOM) is modified to couple with the wave module.The couple procedure includes depth dependent wave radiation stress terms,Stokes drift,vertical transfer of wave-generated pressure transfer to the mean momentum equation,wave dissipation as a source term in the turbulence kinetic energy equation,and mean current advection and refraction of wave energy.Several applications are presented to evaluate the developed model.In particular the wind and wave-induced storm surge generated by Hurricane Katrina is investigated.The obtained results have been compared to the in situ measurements with respect to the wave heights and water level elevations revealing good accuracy of the model in reproduction of the investigated events.In a comparison to water level measurements at Dauphin Island,inclusion of the wave induced water level setup reduced the normalized root mean square error from 0.301 to 0.257 m and increased the correlation coefficient from 0.860 to 0.929.Several runs were carried out to analyze the effects of waves.The experiments show that among the processes that represent wave effects,radiation stress and wave-induced surface stress are more important than wave-induced bottom stress in affecting the water level.The Hurricane Katrina simulations showed the importance of the inclusion of the wave effects for the hindcast of the water levels during the storm surge.展开更多
In this article,we detail the methodology developed to construct arbitrarily high order schemes—linear and WENO—on 3D mixed-element unstructured meshes made up of general convex polyhedral elements.The approach is t...In this article,we detail the methodology developed to construct arbitrarily high order schemes—linear and WENO—on 3D mixed-element unstructured meshes made up of general convex polyhedral elements.The approach is tailored specifically for the solution of scalar level set equations for application to incompressible two-phase flow problems.The construction of WENO schemes on 3D unstructured meshes is notoriously difficult,as it involves a much higher level of complexity than 2D approaches.This due to the multiplicity of geometrical considerations introduced by the extra dimension,especially on mixed-element meshes.Therefore,we have specifically developed a number of algorithms to handle mixed-element meshes composed of convex polyhedra with convex polygonal faces.The contribution of this work concerns several areas of interest:the formulation of an improved methodology in 3D,the minimisation of computational runtime in the implementation through the maximum use of pre-processing operations,the generation of novel methods to handle complex 3D mixed-element meshes and finally the application of the method to the transport of a scalar level set.展开更多
The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differenti...The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differential equations: an elliptic equation for electric potential, two convection-diffusion equations for electron concentration and hole concentration, and a heat conduction equation for temperature. The first equation is solved by the conservative block-centered method. The concentrations and temperature are computed by the block-centered upwind difference method on a changing mesh, where the block-centered method and upwind approximation are used to discretize the diffusion and convection, respectively. The computations on a changing mesh show very well the local special properties nearby the P-N junction. The upwind scheme is applied to approximate the convection, and numerical dispersion and nonphysical oscillation are avoided. The block-centered difference computes concentrations, temperature, and their adjoint vector functions simultaneously.The local conservation of mass, an important rule in the numerical simulation of a semiconductor device, is preserved during the computations. An optimal order convergence is obtained. Numerical examples are provided to show efficiency and application.展开更多
The development of an electrocatalyst based on abundant elements for the oxygen evolution reaction (OER) is important for water splitting associated with renewable energy sources. In this study, we develop an interc...The development of an electrocatalyst based on abundant elements for the oxygen evolution reaction (OER) is important for water splitting associated with renewable energy sources. In this study, we develop an interconnected Ni(Fe)OxHy nanosheet array on a stainless steel mesh (SSNNi) as an integrated OER electrode, without using any polymer binder. Benefiting from the well- defined three-dimensional (3D) architecture with highly exposed surface area, intimate contact between the active species and conductive substrate improved electron and mass transport capacity, facilitated electrolyte penetration, and improved mechanical stability. The SSNNi electrode also has excellent OER performance, including low overpotential, a small Tafel slope, and long-term durability in the alkaline electrolyte, making it one of the most promising OER electrodes developed.展开更多
对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些有限元网格划分问题作简要阐述,并给出一个复杂模型的AN SY S有限...对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些有限元网格划分问题作简要阐述,并给出一个复杂模型的AN SY S有限元网格划分实例。为工程设计提供参考。展开更多
文摘In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are connected either directly or through some intermediate devices.These terminating and intermediate devices are considered as vertices of graph whereas wired or wireless connections among these devices are shown as edges of graph.Topological indices are used to reflect structural property of graphs in form of one real number.This structural invariant has revolutionized the field of chemistry to identify molecular descriptors of chemical compounds.These indices are extensively used for establishing relationships between the structure of nanotubes and their physico-chemical properties.In this paper a representation of sodium chloride(NaCl)is studied,because structure of NaCl is same as the Cartesian product of three paths of length exactly like a mesh network.In this way the general formula obtained in this paper can be used in chemistry as well as for any degree-based topological polynomials of three-dimensional mesh networks.
基金supported by the National Natural Science Foundation of China (Grant Nos.50839001 and 50779006)
文摘Using unstructured meshes provides great flexibility for modeling the flow in complex geomorphology of tidal creeks,barriers and islands,with refined grid resolution in regions of interest and not elsewhere.In this paper,an unstructured three-dimensional fully coupled wave-current model is developed.Firstly,a parallel,unstructured wave module is developed.Variations in wave properties are governed by a wave energy equation that includes wave-current interactions and dissipation representative of wave breaking.Then,the existing Finite-Volume Coastal Ocean Model(FVCOM) is modified to couple with the wave module.The couple procedure includes depth dependent wave radiation stress terms,Stokes drift,vertical transfer of wave-generated pressure transfer to the mean momentum equation,wave dissipation as a source term in the turbulence kinetic energy equation,and mean current advection and refraction of wave energy.Several applications are presented to evaluate the developed model.In particular the wind and wave-induced storm surge generated by Hurricane Katrina is investigated.The obtained results have been compared to the in situ measurements with respect to the wave heights and water level elevations revealing good accuracy of the model in reproduction of the investigated events.In a comparison to water level measurements at Dauphin Island,inclusion of the wave induced water level setup reduced the normalized root mean square error from 0.301 to 0.257 m and increased the correlation coefficient from 0.860 to 0.929.Several runs were carried out to analyze the effects of waves.The experiments show that among the processes that represent wave effects,radiation stress and wave-induced surface stress are more important than wave-induced bottom stress in affecting the water level.The Hurricane Katrina simulations showed the importance of the inclusion of the wave effects for the hindcast of the water levels during the storm surge.
基金This work has been funded by Rolls-Royce Group plc.
文摘In this article,we detail the methodology developed to construct arbitrarily high order schemes—linear and WENO—on 3D mixed-element unstructured meshes made up of general convex polyhedral elements.The approach is tailored specifically for the solution of scalar level set equations for application to incompressible two-phase flow problems.The construction of WENO schemes on 3D unstructured meshes is notoriously difficult,as it involves a much higher level of complexity than 2D approaches.This due to the multiplicity of geometrical considerations introduced by the extra dimension,especially on mixed-element meshes.Therefore,we have specifically developed a number of algorithms to handle mixed-element meshes composed of convex polyhedra with convex polygonal faces.The contribution of this work concerns several areas of interest:the formulation of an improved methodology in 3D,the minimisation of computational runtime in the implementation through the maximum use of pre-processing operations,the generation of novel methods to handle complex 3D mixed-element meshes and finally the application of the method to the transport of a scalar level set.
基金supported the Natural Science Foundation of Shandong Province(ZR2016AM08)Natural Science Foundation of Hunan Province(2018JJ2028)National Natural Science Foundation of China(11871312).
文摘The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differential equations: an elliptic equation for electric potential, two convection-diffusion equations for electron concentration and hole concentration, and a heat conduction equation for temperature. The first equation is solved by the conservative block-centered method. The concentrations and temperature are computed by the block-centered upwind difference method on a changing mesh, where the block-centered method and upwind approximation are used to discretize the diffusion and convection, respectively. The computations on a changing mesh show very well the local special properties nearby the P-N junction. The upwind scheme is applied to approximate the convection, and numerical dispersion and nonphysical oscillation are avoided. The block-centered difference computes concentrations, temperature, and their adjoint vector functions simultaneously.The local conservation of mass, an important rule in the numerical simulation of a semiconductor device, is preserved during the computations. An optimal order convergence is obtained. Numerical examples are provided to show efficiency and application.
基金This work is financially supported by the National Natural Science Foundation of China (Nos. 51472209, U1401241, 51522101, 51471075, 5163100, and 51401084), and Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110061120040).
文摘The development of an electrocatalyst based on abundant elements for the oxygen evolution reaction (OER) is important for water splitting associated with renewable energy sources. In this study, we develop an interconnected Ni(Fe)OxHy nanosheet array on a stainless steel mesh (SSNNi) as an integrated OER electrode, without using any polymer binder. Benefiting from the well- defined three-dimensional (3D) architecture with highly exposed surface area, intimate contact between the active species and conductive substrate improved electron and mass transport capacity, facilitated electrolyte penetration, and improved mechanical stability. The SSNNi electrode also has excellent OER performance, including low overpotential, a small Tafel slope, and long-term durability in the alkaline electrolyte, making it one of the most promising OER electrodes developed.