Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean...Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.展开更多
This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling in...This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling instability occurs. In the case of low flow velocity, the pipe is stable with a straight equilibrium position and the dynamics of the system can be examined using linear theory. When the flow velocity is beyond the critical value, any motions of the pipe could be around the postbuckling configuration(non-zero equilibrium position) rather than the straight equilibrium position, so nonlinear theory is required. The nonlinear equations of perturbed motions around the postbuckling configuration are derived and solved with the aid of Galerkin discretization. It is found, for a given flow velocity,that the first-mode frequency for in-plane motions is quite different from that for out-of-plane motions. However, the second-or third-mode frequencies for in-plane motions are approximately equal to their counterparts for out-of-plane motions, keeping almost constant values with increasing flow velocity. Moreover, the orientation angle of the postbuckling configuration plane for a buckled pipe can be significantly affected by initial conditions, displaying new features which have not been observed in the same pipe system factitiously supposed to deform in a single plane.展开更多
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed...Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.展开更多
A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructe...A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructed employing a user-defined computer program developed using the "Fish" language in PFC3D. Important microstructural features of AC were modeled, including aggregate gradation, air voids and mastic. The irregular shape of aggregate particle was modeled using a clump of spheres. The developed model was validated through comparing with experimental measurements and then used to simulate the cyclic uniaxial compression test, based on which the dynamic modulus and phase angle were calculated from the output stress- strain relationship. The effects of air void content, aggregate stiffness and volumetric fraction on AC modulus were further investigated. The experimental results show that the 3D DEM model is able to accurately predict both dynamic modulus and phase angle of AC across a range of temperature and loading frequencies. The user- defined 3D model also demonstrated significant improvement over the general existing two-dimensional models.展开更多
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize t...This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.展开更多
To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test ...To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.展开更多
Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture....Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR.展开更多
This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack...This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack is determined by solving a Fredholm integral equation of the first kind. The results of this paper are very close to those given by the two-dimensional dual integral equation method.展开更多
In this paper, we use differential game theory to study the three-dimensional two-aircraft air-to-air combat problem. We give the ways to determine the Capture Ranges (CR) and the Dangerous Ranges (DR) for these two a...In this paper, we use differential game theory to study the three-dimensional two-aircraft air-to-air combat problem. We give the ways to determine the Capture Ranges (CR) and the Dangerous Ranges (DR) for these two aircraft according to the target entry directions, barrier and isochronic lines respectively. The simulations are given by referring to two sets of real aircraft parameters. After discussing the simulation results, we have obtained some conclusions that match the real air-to-air combat situation quite well.展开更多
The absorber is the key unit in the post-combustion monoethanolamine(MEA)-based carbon dioxide(CO_(2))capture process.A rate-based dynamic model for the absorber is developed and validated using steady-state experimen...The absorber is the key unit in the post-combustion monoethanolamine(MEA)-based carbon dioxide(CO_(2))capture process.A rate-based dynamic model for the absorber is developed and validated using steady-state experimental data reported in open literature.Sensitivity analysis is performed with respect to important model parameters associated with the reaction,mass transport and phy-sical property relationships.Then,a singular value decomposition(SVD)-based subspace parameter estimation method is proposed to improve the model accu-racy.Finally,dynamic simulations are carried out to investigate the effects of the feed rate of lean MEA solution and the flue inlet conditions.Simulation results indicate that the established dynamic model can reasonably reflect the physical behavior of the absorber.Some new insights are gained from the simulation results.展开更多
In this paper, according to economics of real estate and macro-control theory, combine with the characteristics of the real estate market, macro-control of the real estate market is studied. After giving the dynamic m...In this paper, according to economics of real estate and macro-control theory, combine with the characteristics of the real estate market, macro-control of the real estate market is studied. After giving the dynamic model of three-dimensional nonlinear differential equations based on the total number of houses on the real estate business, the government’s averages housing investment funds and the standard price, systematically established the stability conditions of equilibrium point for this model. What’s more, through the use of extreme value analysis model, government funds have been invested in real estate business building devotion principles and the construction base of the real estate businessmen has also been estimated successfully. This provides the corresponding theoretical basis for government macro control policy-making.展开更多
An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning e...An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning electron microscope (ESEM). The samples were machined with a radial notched shape and a sloped surface. Both planar surface deformation and sloping surface deformation-induced microvoids were observed during dynamic tension experiments, where a greater amount of information could be obtained from the sloping surface. The results showed that microvoids formed at the grain boundaries of highly elongated large grains. The microvoids nucleated in the severely deformed regions grew nearly parallel to the tensile axis, predominantly along the grain boundaries. The microvoids nucleated at the interface of particles and the matrix did not propagate due to the high plasticity of the matrix. The large microvoids propagated and showed a zigzag shape along the grain boundaries,seemingly a consequence of the fracture of the slip bands caused by dislocation pile-ups. The final failure took place due to the reduction of the load-beating area.展开更多
The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space m...The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space manipulator is derived using the sec- ond Lagrangian equation. Combining the momentum conservation principle, the impact dynamics and effect between the space manipulator end-effector and satellite of the cap- ture process are analyzed with the momentum impulse method. Focusing on the unstable motion of space manipulator due to the above impact effect, a robust adaptive compound control algorithm is designed to suppress the above unstable motion. There is no need to control the free-floating base position to save the jet fuel. Finally, the simulation is proposed to show the impact effect and verify the validity of the control algorithm.展开更多
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ...The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.展开更多
Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. ...Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. This research indicated that under the action of steady loading, the mechanical deformation path of the simulated gas drainage borehole is gradually complicated, and the decay of the borehole circumferential strain is an important characterization of the prediction and early warning of borehole instability and collapse. The horizontal position of borehole occurs compressive strain, and the vertical of which occurs tensile strain under the action of vertical stress. At the initial stage of loading, the vertical strain is more sensitive than that in the horizontal direction. After a certain period of time, the horizontal strain is gradually higher than the vertical one, and the intersection of the borehole horizontal diameter and the hole wall is the stress concentration point. With the increase of the depth of hole, the strain shows a gradual decay trend as a whole, and the vertical strain decays more observably, but there is no absolute position correlation between the amount of strain decay and the increase in borehole depth,and the area within 1.5 times the orifice size is the borehole stress concentration zone.展开更多
A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-...A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-bar linkages lock the docking ring,which is used for connecting the satellite and the rocket. The mathematical model of capture mechanism and capture space is built by the Denavit-Hartenberg(D-H)method,and the torque of each joint is analyzed by the Lagrange dynamic equation. Besides,the capture condition and the torque of every joint under different capture conditions are analyzed by simulation in MSC. Adams. The results indicate that the mechanism can capture the non-cooperative target satellite in a wide range. During the process of capture,the passive compliant mechanism at the bottom can increase capture space,thereby reducing the difficulty and enhance stability of the capture.展开更多
A three-dimensional discrete element model of the connective type is presented. Moreover,a three-dimensional numerical analysis code,which can carry out the transitional pro- cess from connective model(for continuum)t...A three-dimensional discrete element model of the connective type is presented. Moreover,a three-dimensional numerical analysis code,which can carry out the transitional pro- cess from connective model(for continuum)to contact model(for non-continuum),is developed for simulating the mechanical process from continuum to non-continuum.The wave propagation process in a concrete block(as continuum)made of cement grout under impact loading is numer- ically simulated with this code.By comparing its numerical results with those by LS-DYNA,the calculation accuracy of the model and algorithm is proved.Furthermore,the failure process of the concrete block under quasi-static loading is demonstrated,showing the basic dynamic tran- sitional process from continuum to non-continuum.The results of calculation can be displayed by animation.The damage modes are similar to the experimental results.The two numerical examples above prove that our model and its code are powerful and efficient in simulating the dynamic failure problems accompanying the transition from continuum to non-continuum.It also shows that the discrete element method(DEM)will have broad prospects for development and application.展开更多
A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens...A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens of the same lamination sequence are subjected to three different impact energies(10 J,15 J,and 20 J).After the impact,the laminates are inspected by the naked eye to observe the damage in the outer layers,and subsequently X-rayed to detect the inner damage.Next,the stress analysis of laminates subjected to impact loading is presented,based on the Hertz contact law and virtual displacement principle.Based on the analysis results,a three-dimensional dynamic damage model is proposed,including the Hou failure criteria and Camanho stiffness degradation model,to predict the impact damage shape and area.The numerical predictions of the damage shape and area show a relatively reasonable agreement with the experiments.Finally,the impact damage initiation and propagation for each lamina are investigated using this damage model,and the results improve the understanding of the impact process.展开更多
The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the rat...The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the ratio of the wave speeds on the stressintensity factor. The present method is suitable not only forthree-dimensional dynamic crack, but also for three-dimensionaldynamic contact.展开更多
Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actu...Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit procedure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a roughing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.展开更多
基金The National Key R&D Program of China under contract No.2021YFC3101603.
文摘Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.
基金supported by the National Natural Science Foundation of China (Grants 11602090, 11622216, and 11672115)
文摘This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling instability occurs. In the case of low flow velocity, the pipe is stable with a straight equilibrium position and the dynamics of the system can be examined using linear theory. When the flow velocity is beyond the critical value, any motions of the pipe could be around the postbuckling configuration(non-zero equilibrium position) rather than the straight equilibrium position, so nonlinear theory is required. The nonlinear equations of perturbed motions around the postbuckling configuration are derived and solved with the aid of Galerkin discretization. It is found, for a given flow velocity,that the first-mode frequency for in-plane motions is quite different from that for out-of-plane motions. However, the second-or third-mode frequencies for in-plane motions are approximately equal to their counterparts for out-of-plane motions, keeping almost constant values with increasing flow velocity. Moreover, the orientation angle of the postbuckling configuration plane for a buckled pipe can be significantly affected by initial conditions, displaying new features which have not been observed in the same pipe system factitiously supposed to deform in a single plane.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.
基金Funded by the National "863" Plan Foundation of China(No.2006AA11Z110)
文摘A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructed employing a user-defined computer program developed using the "Fish" language in PFC3D. Important microstructural features of AC were modeled, including aggregate gradation, air voids and mastic. The irregular shape of aggregate particle was modeled using a clump of spheres. The developed model was validated through comparing with experimental measurements and then used to simulate the cyclic uniaxial compression test, based on which the dynamic modulus and phase angle were calculated from the output stress- strain relationship. The effects of air void content, aggregate stiffness and volumetric fraction on AC modulus were further investigated. The experimental results show that the 3D DEM model is able to accurately predict both dynamic modulus and phase angle of AC across a range of temperature and loading frequencies. The user- defined 3D model also demonstrated significant improvement over the general existing two-dimensional models.
基金Postdoctoral Fund of China (No. 2003034518), Fund of Health Bureau of Zhejiang Province (No. 2004B042), China
文摘This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
基金supported by Project of the National Natural Science Foundation of China (No.62073256, 61773305)the Key Science and Technology Program of Shaanxi Province (No.2020GY-125)Xi’an Science and Technology Innovation talent service enterprise project (No.2020KJRC0041)。
文摘To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.
基金supported by the National Natural Science Foundation of China(21506181,21506179)Natural Science Foundation of Hunan Province(2020JJ3033,2019JJ40281,2018SK2027,2018RS3088,2019SK2112)+1 种基金Research Foundation of Education Bureau of Hunan Province(18B088)Hunan Key Laboratory of Environment Friendly Chemical Process Integration and Hunan 2011 Collaborative Innovation Center of Chemical Engineering&Technology with Environmental Benignity and Effective Resource Utilization,State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2020-KF-11).
文摘Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR.
基金The project supported by the National Natural Science Foundation of China (K19672007)
文摘This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack is determined by solving a Fredholm integral equation of the first kind. The results of this paper are very close to those given by the two-dimensional dual integral equation method.
基金research was supported by Aviation Science Fund.
文摘In this paper, we use differential game theory to study the three-dimensional two-aircraft air-to-air combat problem. We give the ways to determine the Capture Ranges (CR) and the Dangerous Ranges (DR) for these two aircraft according to the target entry directions, barrier and isochronic lines respectively. The simulations are given by referring to two sets of real aircraft parameters. After discussing the simulation results, we have obtained some conclusions that match the real air-to-air combat situation quite well.
基金The work was financially supported by Basic Public Welfare research Plan of Zhejiang Province(LGG19F030006)Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province,China Jiliang University(Grant No.ZNZZSZ–CJLU2022–04)the Key Research and Development Program of Ningbo(2022Z165).
文摘The absorber is the key unit in the post-combustion monoethanolamine(MEA)-based carbon dioxide(CO_(2))capture process.A rate-based dynamic model for the absorber is developed and validated using steady-state experimental data reported in open literature.Sensitivity analysis is performed with respect to important model parameters associated with the reaction,mass transport and phy-sical property relationships.Then,a singular value decomposition(SVD)-based subspace parameter estimation method is proposed to improve the model accu-racy.Finally,dynamic simulations are carried out to investigate the effects of the feed rate of lean MEA solution and the flue inlet conditions.Simulation results indicate that the established dynamic model can reasonably reflect the physical behavior of the absorber.Some new insights are gained from the simulation results.
文摘In this paper, according to economics of real estate and macro-control theory, combine with the characteristics of the real estate market, macro-control of the real estate market is studied. After giving the dynamic model of three-dimensional nonlinear differential equations based on the total number of houses on the real estate business, the government’s averages housing investment funds and the standard price, systematically established the stability conditions of equilibrium point for this model. What’s more, through the use of extreme value analysis model, government funds have been invested in real estate business building devotion principles and the construction base of the real estate businessmen has also been estimated successfully. This provides the corresponding theoretical basis for government macro control policy-making.
文摘An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning electron microscope (ESEM). The samples were machined with a radial notched shape and a sloped surface. Both planar surface deformation and sloping surface deformation-induced microvoids were observed during dynamic tension experiments, where a greater amount of information could be obtained from the sloping surface. The results showed that microvoids formed at the grain boundaries of highly elongated large grains. The microvoids nucleated in the severely deformed regions grew nearly parallel to the tensile axis, predominantly along the grain boundaries. The microvoids nucleated at the interface of particles and the matrix did not propagate due to the high plasticity of the matrix. The large microvoids propagated and showed a zigzag shape along the grain boundaries,seemingly a consequence of the fracture of the slip bands caused by dislocation pile-ups. The final failure took place due to the reduction of the load-beating area.
基金supported by the National Natural Science Foundation of China(Nos.11072061 and 11372073)the Natural Science Foundation of Fujian Province(No.2010J01003)
文摘The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space manipulator is derived using the sec- ond Lagrangian equation. Combining the momentum conservation principle, the impact dynamics and effect between the space manipulator end-effector and satellite of the cap- ture process are analyzed with the momentum impulse method. Focusing on the unstable motion of space manipulator due to the above impact effect, a robust adaptive compound control algorithm is designed to suppress the above unstable motion. There is no need to control the free-floating base position to save the jet fuel. Finally, the simulation is proposed to show the impact effect and verify the validity of the control algorithm.
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2022D01A330)the CNPC (China National Petroleum Corporation)Scientific Research and Technology Development Project (Grant No.2021DJ1501)+1 种基金National Natural Science Foundation Project (No.52274030)“Tianchi Talent”Introduction Plan of Xinjiang Uygur Autonomous Region (2022).
文摘The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.
基金financial support of Distinguished scholars of yueqi (NO. 800015Z1179)National Science Fund subsidized project (51474220)Basic scientific research project of the CPC Central Committee (NO. 2009QZ03)
文摘Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. This research indicated that under the action of steady loading, the mechanical deformation path of the simulated gas drainage borehole is gradually complicated, and the decay of the borehole circumferential strain is an important characterization of the prediction and early warning of borehole instability and collapse. The horizontal position of borehole occurs compressive strain, and the vertical of which occurs tensile strain under the action of vertical stress. At the initial stage of loading, the vertical strain is more sensitive than that in the horizontal direction. After a certain period of time, the horizontal strain is gradually higher than the vertical one, and the intersection of the borehole horizontal diameter and the hole wall is the stress concentration point. With the increase of the depth of hole, the strain shows a gradual decay trend as a whole, and the vertical strain decays more observably, but there is no absolute position correlation between the amount of strain decay and the increase in borehole depth,and the area within 1.5 times the orifice size is the borehole stress concentration zone.
基金supported by the National Natural Science Foundation of China(No.51675264)
文摘A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-bar linkages lock the docking ring,which is used for connecting the satellite and the rocket. The mathematical model of capture mechanism and capture space is built by the Denavit-Hartenberg(D-H)method,and the torque of each joint is analyzed by the Lagrange dynamic equation. Besides,the capture condition and the torque of every joint under different capture conditions are analyzed by simulation in MSC. Adams. The results indicate that the mechanism can capture the non-cooperative target satellite in a wide range. During the process of capture,the passive compliant mechanism at the bottom can increase capture space,thereby reducing the difficulty and enhance stability of the capture.
基金Project supported by the National Natural Science Foundation of China(Nos.59978005 and 10232024)the National Distinguished Youth Fund of China(No.10025212).
文摘A three-dimensional discrete element model of the connective type is presented. Moreover,a three-dimensional numerical analysis code,which can carry out the transitional pro- cess from connective model(for continuum)to contact model(for non-continuum),is developed for simulating the mechanical process from continuum to non-continuum.The wave propagation process in a concrete block(as continuum)made of cement grout under impact loading is numer- ically simulated with this code.By comparing its numerical results with those by LS-DYNA,the calculation accuracy of the model and algorithm is proved.Furthermore,the failure process of the concrete block under quasi-static loading is demonstrated,showing the basic dynamic tran- sitional process from continuum to non-continuum.The results of calculation can be displayed by animation.The damage modes are similar to the experimental results.The two numerical examples above prove that our model and its code are powerful and efficient in simulating the dynamic failure problems accompanying the transition from continuum to non-continuum.It also shows that the discrete element method(DEM)will have broad prospects for development and application.
文摘A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens of the same lamination sequence are subjected to three different impact energies(10 J,15 J,and 20 J).After the impact,the laminates are inspected by the naked eye to observe the damage in the outer layers,and subsequently X-rayed to detect the inner damage.Next,the stress analysis of laminates subjected to impact loading is presented,based on the Hertz contact law and virtual displacement principle.Based on the analysis results,a three-dimensional dynamic damage model is proposed,including the Hou failure criteria and Camanho stiffness degradation model,to predict the impact damage shape and area.The numerical predictions of the damage shape and area show a relatively reasonable agreement with the experiments.Finally,the impact damage initiation and propagation for each lamina are investigated using this damage model,and the results improve the understanding of the impact process.
基金the National Natural Science Foundation of China( No.K19672007)
文摘The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the ratio of the wave speeds on the stressintensity factor. The present method is suitable not only forthree-dimensional dynamic crack, but also for three-dimensionaldynamic contact.
文摘Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit procedure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a roughing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.