The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are ...The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.展开更多
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy curre...To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.展开更多
Eddy currents produced by a time-varying magnetic field will introduce time delay and thus affect field quality. This effect leads to drifting of the beam position over time, especially for a compact synchrotron.Simul...Eddy currents produced by a time-varying magnetic field will introduce time delay and thus affect field quality. This effect leads to drifting of the beam position over time, especially for a compact synchrotron.Simulations and measurements of different dipoles have been performed, to investigate the time delay and field quality. The simulations are conducted using OPERA software. The measurements are conducted using a long coil and Hall sensor. All results show that the magnetic field deviation is up to 0.4% for the dipole with stainless steel endplates. The simulations show that the main sources of eddy current are the field saturation effect and the field component Bz, introduced by the bedstead-type coil. Field correction using a power supply is adopted to reduce the deviation to less than 0.02%.展开更多
As a common practice,a large hydro-generator will operate in leading phase conditions to absorb the reactive power of the power grid.However,the accurate and precise prediction of the leading phase operation capacity ...As a common practice,a large hydro-generator will operate in leading phase conditions to absorb the reactive power of the power grid.However,the accurate and precise prediction of the leading phase operation capacity of a large hydro-generator has always been a formidable challenge to engineers and academicians because it is extremely hard to compute the eddy currents and losses as well as the local overheating in the pressure plate and finger.To address this problem,a full three dimensional(3D)finite element model and method of the coupled eddy current and temperature fields in the end region of a large hydro-generator are developed.The equivalent medium parameters used in the computations are comprehensively discussed.Moreover,some numerically based solution methodologies for accurate computation of the field and armature currents under different leading phase conditions are proposed.Numerical results on the coupled eddy current and temperature fields in the end regions of a 250 MW hydro-generator confirm positively the feasibility of the present work.展开更多
A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especia...A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.展开更多
Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy cu...Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy current loss by cutting the angle of PM poles to change the shape of PM structure. Firstly, an analysis is conducted on the mechanism of PM synchronous high-speed motor eddy current loss production, the theoretical analytical model of PM eddy current loss is deduced, and it is theoretically proved that the magnetic pole shaving angle can reduce PM eddy current loss. Then, a 25 KW surface-type PM synchronous high-speed motor as an object, using two-dimensional time-step finite element method (FEM) to model and analyze PM eddy current loss. The results show that the smaller the PM pole shaving angle, the less its eddy current loss will be, it is possible to minimize the pole shaving angle of eddy current loss by 9.8% compared to the unshaved angle. Finally, the temperature field of the PM is calculated using a finite element method, and the outcomes demonstrate that the maximum temperature of the PM with a magnetic pole shaving angle can be reduced by about 5% compared with the unshaved angle.展开更多
In this paper, the finite element method using vector potential in applications to 2D nonlinear eddy current field is discussed. The authors use the equivalent magnetic energy method to deal with magnetization curve o...In this paper, the finite element method using vector potential in applications to 2D nonlinear eddy current field is discussed. The authors use the equivalent magnetic energy method to deal with magnetization curve of ferromagnetic material,and present the formulation of 2D nonlinear eddy current field.With this method the authors analyze the eddy current field in an induction ladle furnace and the force distribution in the charge (molten metal),and plot the corresponding curves.展开更多
After the field equations and the snonumuoo conditions between the interfaces for 3D eddy current problems Under various gauges were discussed, it was pointed cut in this paper that using the magnetic vector potentia...After the field equations and the snonumuoo conditions between the interfaces for 3D eddy current problems Under various gauges were discussed, it was pointed cut in this paper that using the magnetic vector potential A. the electric scalar potential and Coulomb gauge △ .A = 0 in eddy current regions and using the magntetic scalar potential Ω in the non-conducting regions are more suitable. All field equations, the boundary conditions, the interface continuity conditions and the corresponding variational principle of this method are also given展开更多
In order to improve the convective heat transfer relating to an eddy current retarder,the finite element model has been used to assess the performances of different possible designs.In particular,assuming the steady r...In order to improve the convective heat transfer relating to an eddy current retarder,the finite element model has been used to assess the performances of different possible designs.In particular,assuming the steady running state of retarder as the working condition,flow and temperature fields have been obtained for the rotor.The influence of airflow path on heat dissipation has been analysed,and the influence of the temperature field distribution on the performance of retarder has been discussed accordingly.The results show that when the steady running state of the turntable is considered,the maximum temperature is lower,the level of turbulence flow is mitigated,and the temperature distribution becomes more regular.These factors contribute to improve the heat dissipation ability of the retarder.展开更多
It is known that eddy current effect has a great influence on magnetic flux leakage testing(MFL).Usually,contacttype encoder wheels are used to measure MFL testing speed to evaluate the effect and further compensate t...It is known that eddy current effect has a great influence on magnetic flux leakage testing(MFL).Usually,contacttype encoder wheels are used to measure MFL testing speed to evaluate the effect and further compensate testing signals.This speed measurement method is complicated,and inevitable abrasion and occasional slippage will reduce the measurement accuracy.In order to solve this problem,based on eddy current effect due to the relative movement,a speed measurement method is proposed,which is contactless and simple.In the high-speed MFL testing,eddy current induced in the specimen will cause an obvious modification to the applied field.This modified field,which is measured by Hall sensor,can be utilized to reflect the moving speed.Firstly,the measurement principle is illustrated based on Faraday’s law.Then,dynamic finite element simulations are conducted to investigate the modified magnetic field distribution.Finally,laboratory experiments are performed to validate the feasibility of the proposed method.The results show that Bmz(r1)and Bmx(r2)have a linear relation with moving speed,which could be used as an alternative measurement parameter.展开更多
This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) obs...This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) observations of mesoscale eddies with diameter of several tens of kilometers to hundreds of kilometers show that the internal wave packets with wavelength of hundreds of meters to kilometer exist inside the mesoscale eddies. This coexistence phenomenon and inherent links between the two different scale processes are revealed in the solutions of governing equations and boundary conditions for the internal wave disturbance with a horizontally slowly variable amplitude in a cylindrical coordinate system. The theoretical solutions indicate that the instability of eddy current field provides the dynamical mechanism to internal wave generation. The derived dispersion relation indicates that the internal wave propagation is modified by the eddy current field structure. The energy equation of the internal waves clearly shows the internal wave energy increment comes from the eddy. The theoretical models are used to explain the observation of the mesoscale eddy-induced internal waves off the Norwegian coast. The two-dimensional waveform solution of the anticyclonic eddy-induced internal wave packet appears as ring-shaped curves, which contains the typical features of eddy stream lines. The comparison of theoretical solutions to the structure of the internal wave packets on SAR image shows a good agreement on the major features.展开更多
In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynami...In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field.展开更多
A transient temperature field model in a thrust magnetic bearing is built in which the heat resources come mainly from the eddy-current loss of solid cores and the copper loss of coils. The transient temperature field...A transient temperature field model in a thrust magnetic bearing is built in which the heat resources come mainly from the eddy-current loss of solid cores and the copper loss of coils. The transient temperature field, system temperature rise and the thermo-equilibrium state during the rotor starting-up are calculated considering only the copper loss and the eddy-current loss. The numerical results indicate that the temperatures in coils and in magnets rise rapidly, their thermo-equilibrium states are formed within a short time. The temperatures in a thrust-disk and in a rotor rise slowly, their thermo-equilibrium states are formed aller a long period time. The temperatures of the thrust-disk and the rotor are far higher than the temperatures of coils and/or magnets aller the thermo-equilibrium state has come into being.展开更多
This paper details the creation of a device capable of generating a powerful and consistent static magnetic field. This apparatus serves the purpose of quantifying the magnetostrictive strain found in materials like a...This paper details the creation of a device capable of generating a powerful and consistent static magnetic field. This apparatus serves the purpose of quantifying the magnetostrictive strain found in materials like annealed cobalt ferrite and Terfenol-D, specifically those shaped as cylindrical rods. In our investigation, the use of static magnetic fields proves most advantageous. This choice is made to mitigate the generation of eddy currents, which would inevitably occur if the magnetic field intensity were varied. The fundamental idea behind this design involves employing a C-shaped iron core constructed from low-carbon mild steel. On this core, three coils are mounted, each capable of producing one-third of the required 9000 Oersted (Oe) magnetic field strength. The test specimen is situated within the “jaws” of the C-shaped core, thus completing the magnetic circuit. To manage the heat generated by each coil, a cooling system consisting of copper tubes is employed. These tubes facilitate the flow of air to dissipate the heat. To model and predict the magnetic field strength produced by the coils, finite element analysis (FEMM) software is utilized, and the results align closely with the anticipated outcomes. This design effectively generates a robust and unchanging magnetic field measuring a stable 9000 Oe in total. Consequently, this equipment finds utility in characterizing the magnetic properties of specific materials.展开更多
The work is an attempt to find the force with which an electromagnetic system with Foucault currents acts on itself. It is taken into account that the average force with which the source of the alternating magnetic fi...The work is an attempt to find the force with which an electromagnetic system with Foucault currents acts on itself. It is taken into account that the average force with which the source of the alternating magnetic field and the inductive Foucault current is equal to zero, the self-force arises as a result of the interaction of unclosed Foucault conduction currents with the displacement current created by a conductor located in a non-uniform magnetic field. The average force acting on a symmetrical conductor located between the poles of an electromagnet turned out to be different from zero. The greatest value of this force is observed in the region of maximum inhomogeneity of the magnetic field.展开更多
基金Department of Science and Technology of Jiangsu Province,China(No. BE2003-46).
文摘The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z132013T001)
文摘To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.
基金supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.20150210)
文摘Eddy currents produced by a time-varying magnetic field will introduce time delay and thus affect field quality. This effect leads to drifting of the beam position over time, especially for a compact synchrotron.Simulations and measurements of different dipoles have been performed, to investigate the time delay and field quality. The simulations are conducted using OPERA software. The measurements are conducted using a long coil and Hall sensor. All results show that the magnetic field deviation is up to 0.4% for the dipole with stainless steel endplates. The simulations show that the main sources of eddy current are the field saturation effect and the field component Bz, introduced by the bedstead-type coil. Field correction using a power supply is adopted to reduce the deviation to less than 0.02%.
文摘As a common practice,a large hydro-generator will operate in leading phase conditions to absorb the reactive power of the power grid.However,the accurate and precise prediction of the leading phase operation capacity of a large hydro-generator has always been a formidable challenge to engineers and academicians because it is extremely hard to compute the eddy currents and losses as well as the local overheating in the pressure plate and finger.To address this problem,a full three dimensional(3D)finite element model and method of the coupled eddy current and temperature fields in the end region of a large hydro-generator are developed.The equivalent medium parameters used in the computations are comprehensively discussed.Moreover,some numerically based solution methodologies for accurate computation of the field and armature currents under different leading phase conditions are proposed.Numerical results on the coupled eddy current and temperature fields in the end regions of a 250 MW hydro-generator confirm positively the feasibility of the present work.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51137004,61427806 and 51577184the Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507
文摘A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.
文摘Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy current loss by cutting the angle of PM poles to change the shape of PM structure. Firstly, an analysis is conducted on the mechanism of PM synchronous high-speed motor eddy current loss production, the theoretical analytical model of PM eddy current loss is deduced, and it is theoretically proved that the magnetic pole shaving angle can reduce PM eddy current loss. Then, a 25 KW surface-type PM synchronous high-speed motor as an object, using two-dimensional time-step finite element method (FEM) to model and analyze PM eddy current loss. The results show that the smaller the PM pole shaving angle, the less its eddy current loss will be, it is possible to minimize the pole shaving angle of eddy current loss by 9.8% compared to the unshaved angle. Finally, the temperature field of the PM is calculated using a finite element method, and the outcomes demonstrate that the maximum temperature of the PM with a magnetic pole shaving angle can be reduced by about 5% compared with the unshaved angle.
文摘In this paper, the finite element method using vector potential in applications to 2D nonlinear eddy current field is discussed. The authors use the equivalent magnetic energy method to deal with magnetization curve of ferromagnetic material,and present the formulation of 2D nonlinear eddy current field.With this method the authors analyze the eddy current field in an induction ladle furnace and the force distribution in the charge (molten metal),and plot the corresponding curves.
文摘After the field equations and the snonumuoo conditions between the interfaces for 3D eddy current problems Under various gauges were discussed, it was pointed cut in this paper that using the magnetic vector potential A. the electric scalar potential and Coulomb gauge △ .A = 0 in eddy current regions and using the magntetic scalar potential Ω in the non-conducting regions are more suitable. All field equations, the boundary conditions, the interface continuity conditions and the corresponding variational principle of this method are also given
基金supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJ1603004).
文摘In order to improve the convective heat transfer relating to an eddy current retarder,the finite element model has been used to assess the performances of different possible designs.In particular,assuming the steady running state of retarder as the working condition,flow and temperature fields have been obtained for the rotor.The influence of airflow path on heat dissipation has been analysed,and the influence of the temperature field distribution on the performance of retarder has been discussed accordingly.The results show that when the steady running state of the turntable is considered,the maximum temperature is lower,the level of turbulence flow is mitigated,and the temperature distribution becomes more regular.These factors contribute to improve the heat dissipation ability of the retarder.
基金supported in part by the National Natural Science Foundation of China(Grant No.92060114)in part by the Sichuan Science and Technology Program(Nos.2022YFS0524 and 2022YFG0044).
文摘It is known that eddy current effect has a great influence on magnetic flux leakage testing(MFL).Usually,contacttype encoder wheels are used to measure MFL testing speed to evaluate the effect and further compensate testing signals.This speed measurement method is complicated,and inevitable abrasion and occasional slippage will reduce the measurement accuracy.In order to solve this problem,based on eddy current effect due to the relative movement,a speed measurement method is proposed,which is contactless and simple.In the high-speed MFL testing,eddy current induced in the specimen will cause an obvious modification to the applied field.This modified field,which is measured by Hall sensor,can be utilized to reflect the moving speed.Firstly,the measurement principle is illustrated based on Faraday’s law.Then,dynamic finite element simulations are conducted to investigate the modified magnetic field distribution.Finally,laboratory experiments are performed to validate the feasibility of the proposed method.The results show that Bmz(r1)and Bmx(r2)have a linear relation with moving speed,which could be used as an alternative measurement parameter.
基金The RGC under contract No.461907the ONR under contract Nos N00014-05-1-0328and N00014-05-1-0606+1 种基金the SFMSBRP under contract No.973-2007CB411807the NASA JPL under contract No.NMO710968
文摘This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) observations of mesoscale eddies with diameter of several tens of kilometers to hundreds of kilometers show that the internal wave packets with wavelength of hundreds of meters to kilometer exist inside the mesoscale eddies. This coexistence phenomenon and inherent links between the two different scale processes are revealed in the solutions of governing equations and boundary conditions for the internal wave disturbance with a horizontally slowly variable amplitude in a cylindrical coordinate system. The theoretical solutions indicate that the instability of eddy current field provides the dynamical mechanism to internal wave generation. The derived dispersion relation indicates that the internal wave propagation is modified by the eddy current field structure. The energy equation of the internal waves clearly shows the internal wave energy increment comes from the eddy. The theoretical models are used to explain the observation of the mesoscale eddy-induced internal waves off the Norwegian coast. The two-dimensional waveform solution of the anticyclonic eddy-induced internal wave packet appears as ring-shaped curves, which contains the typical features of eddy stream lines. The comparison of theoretical solutions to the structure of the internal wave packets on SAR image shows a good agreement on the major features.
基金Project supported by the National Natural Sciences Foundation of China (Nos. 10132010 and 90405005).
文摘In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field.
基金This project is supported by National Natural Science Foundation of China (No.50505030)Key Technology R&D Program of Shanghai Municipal (No.031111001).
文摘A transient temperature field model in a thrust magnetic bearing is built in which the heat resources come mainly from the eddy-current loss of solid cores and the copper loss of coils. The transient temperature field, system temperature rise and the thermo-equilibrium state during the rotor starting-up are calculated considering only the copper loss and the eddy-current loss. The numerical results indicate that the temperatures in coils and in magnets rise rapidly, their thermo-equilibrium states are formed within a short time. The temperatures in a thrust-disk and in a rotor rise slowly, their thermo-equilibrium states are formed aller a long period time. The temperatures of the thrust-disk and the rotor are far higher than the temperatures of coils and/or magnets aller the thermo-equilibrium state has come into being.
文摘This paper details the creation of a device capable of generating a powerful and consistent static magnetic field. This apparatus serves the purpose of quantifying the magnetostrictive strain found in materials like annealed cobalt ferrite and Terfenol-D, specifically those shaped as cylindrical rods. In our investigation, the use of static magnetic fields proves most advantageous. This choice is made to mitigate the generation of eddy currents, which would inevitably occur if the magnetic field intensity were varied. The fundamental idea behind this design involves employing a C-shaped iron core constructed from low-carbon mild steel. On this core, three coils are mounted, each capable of producing one-third of the required 9000 Oersted (Oe) magnetic field strength. The test specimen is situated within the “jaws” of the C-shaped core, thus completing the magnetic circuit. To manage the heat generated by each coil, a cooling system consisting of copper tubes is employed. These tubes facilitate the flow of air to dissipate the heat. To model and predict the magnetic field strength produced by the coils, finite element analysis (FEMM) software is utilized, and the results align closely with the anticipated outcomes. This design effectively generates a robust and unchanging magnetic field measuring a stable 9000 Oe in total. Consequently, this equipment finds utility in characterizing the magnetic properties of specific materials.
文摘The work is an attempt to find the force with which an electromagnetic system with Foucault currents acts on itself. It is taken into account that the average force with which the source of the alternating magnetic field and the inductive Foucault current is equal to zero, the self-force arises as a result of the interaction of unclosed Foucault conduction currents with the displacement current created by a conductor located in a non-uniform magnetic field. The average force acting on a symmetrical conductor located between the poles of an electromagnet turned out to be different from zero. The greatest value of this force is observed in the region of maximum inhomogeneity of the magnetic field.