期刊文献+
共找到182,329篇文章
< 1 2 250 >
每页显示 20 50 100
A novel three-dimensional electric ophthalmotrope for improving the teaching of ocular movements 被引量:1
1
作者 Lei Xiong Xiao-Yan Ding +5 位作者 Ya-Zhi Fan Yao Xing Xiao-Hui Zhang Ting Li Jian-Ming Wang Feng Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2019年第12期1893-1897,共5页
AIM: To develop a novel three-dimensional(3D) electric ophthalmotrope to improve the ophthalmology teaching effectiveness and evaluate the teaching value. METHODS: A 3D electric ophthalmotrope was designed by simulati... AIM: To develop a novel three-dimensional(3D) electric ophthalmotrope to improve the ophthalmology teaching effectiveness and evaluate the teaching value. METHODS: A 3D electric ophthalmotrope was designed by simulating the movement of the ocular and the extraocular muscles according to Sherrington’s law. The model with joint bearing was to ensure the flexibility and centripetal rotation of the simulated ball and stepper motor as the driving device. A programmable processor was used to control the motion amplitude of the stepper motor. The size of hole was set at the back of the simulated shell to limit the amount of eye movement. Afterwards, using a 5-point Likert scale, 7 experts evaluated the 3D electric ophthalmotrope’s simulation ability and precision, compared with the traditional anatomical model. In addition, the teaching effectiveness of the 3D electric ophthalmotrope was evaluated at in-class quiz and final exam in a randomized controlled trial. RESULTS: The 3D electric ophthalmotrope could be operated easily to demonstrate the eye movements with motion of different ocular muscles. The experts agreed that the 3D electric ophthalmotrope was different from the traditional model and was easier for students to understand every extraocular muscles’ movement in each evaluation index(P<0.05). Moreover, the results of teaching effectiveness showed that the 3D electric ophthalmotrope were significantly greater than the traditional model both at in-class quiz(P<0.01) and final exam(P<0.05). CONCLUSION: This novel 3D electric ophthalmotrope is better than the traditional model, which can be to improve the ophthalmology teaching effectiveness for students to understand the extraocular muscles’ movement. 展开更多
关键词 extraocular muscles movement ocular myopathy medical education ophthalmotrope three-dimensional electric model
下载PDF
Three-dimensional electric potential induced by a point singularity in a multilayered dielectric medium
2
作者 Xu WANG P. SCHIAVONE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1327-1334,共8页
A simple and effective method is proposed to derive the three-dimensional electric potential induced by a point singularity of any type in an N-phase dielectric medium composed of N-2 intermediate dielectric layers of... A simple and effective method is proposed to derive the three-dimensional electric potential induced by a point singularity of any type in an N-phase dielectric medium composed of N-2 intermediate dielectric layers of equal thickness encased in two semi-infinite dielectric media. The point singularity can include a point charge or a point electric dipole. The original boundary value problem for the N-phase medium is reduced to the determination of a single unknown three-dimensional harmonic function through satisfaction of the continuity conditions across all of the N-1 perfect planar interfaces. The single harmonic function can be completely determined after analytically solving the resulting linear recurrence relations, which are independent of the type and the specific location of the singularity. When the singularity is a point charge, we obtain the self-energy of the point charge expressed in terms of a single function and the Coulomb force on the point charge expressed in terms of the negative derivative of this function. 展开更多
关键词 MULTILAYERED dielectric medium POINT CHARGE POINT electric DIPOLE linear RECURRENCE relation analytical solution
下载PDF
Three-dimensional electrically conductive–hydrophobic layer for stable Zn metal anodes
3
作者 Yang Mei Jiahui Zhou +4 位作者 Botao Zhang Li Li Feng Wu Yongxin Huang Renjie Chen 《SusMat》 SCIE EI 2024年第3期164-174,共11页
The interrelated side reactions and dendrites growth severely destabilize the electrode/electrolyte interfaces,resulting in the difficult application of aqueous Zn ion batteries(AZIBs).Hydrophobic protective layer pos... The interrelated side reactions and dendrites growth severely destabilize the electrode/electrolyte interfaces,resulting in the difficult application of aqueous Zn ion batteries(AZIBs).Hydrophobic protective layer possesses natural inhibition ability for side reactions.However,the conventional protective layer with plane structure is difficult to attain joint regulation of side reaction and Zn nucleation.Herein,a novel three-dimensional(3D)electrically conductive and hydrophobic(3DECH)interface is elaborated to enable stable Zn anode.The as-prepared 3DECHinterface presents a uniform 3Dmorphologywith hydrophobic property,large specific surface area,abundant zincophilic sites,and excellent electroconductivity.Therefore,the 3DECH interface achieves uniform nucleation and dendrite-free deposition from synergetic benefits:(1)increased nucleation sites and reduced local current density through the special 3D structure and(2)uniform electric potential distribution and rapid Zn^(2+)transport due to the electroconductive alloy chemistry,thus coupling the hydrophobic property to obtain a highly reversible Zn anode.Consequently,the modified anode achieves a superior coulombic efficiency of 99.88%over 3500 cycles,and the pouch cells using modified anode and LiMn_(2)O_(4)(LMO)cathode retain a capacity of 84 mAh g^(−1)after 700 cycles at a reasonable depth discharge of 36%,without dendrite piercing and“dead Zn.” 展开更多
关键词 electroconductive layer flat deposition hydrophobic layer three-dimensional surface zincmetal anode
原文传递
The use of carbon-based particle electrodes in three-dimensional electrode reactors for wastewater treatment
4
作者 LU Hua-yu LIU Wei-feng +1 位作者 QIN Lei LIU Xu-guang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期973-991,共19页
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research... The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed. 展开更多
关键词 Environmental pollution three-dimensional electrode technology Carbon-based materials Carbon-based particle electrode
下载PDF
Study of three-dimensional spatial diffuse discharge in contact electrode structure applied to air purification
5
作者 Shuai XU Wenzheng LIU +3 位作者 Jiaying QIN Yiwei SUN Xitao JIANG Qi QI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第10期73-81,共9页
In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ... In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out. 展开更多
关键词 dielectric barrier discharge three-dimensional spatial discharge atmospheric pressure air diffusion discharge air purification
下载PDF
Importance of Three-Dimensional Piezoelectric Coupling Modeling in Quantitative Analysis of Piezoelectric Actuators 被引量:1
6
作者 Daisuke Ishihara Prakasha Chigahalli Ramegowda +1 位作者 Shoichi Aikawa Naoki Iwamaru 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1187-1206,共20页
This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron... This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior. 展开更多
关键词 Piezoelectric coupling effect piezoelectric bimorph actuator weak coupling strong coupling three-dimensional finite element analysis
下载PDF
Three-dimensional electrical structure model of the Yangbajain geothermal field in Tibet:Evidence obtained from magnetotelluric data 被引量:1
7
作者 Guoqiang XUE Weiying CHEN +5 位作者 Ping ZHAO Wangqi REN Yiming HE Pengfei LV Kangxin LEI Yang ZHAO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第8期1839-1852,共14页
The Yangbajain Geothermal Field in Tibet is located in the fault subsidence basin of the central Yadong-Gulu Rift Valley.The spatial distribution of the field is controlled by mountain-front fault zones on the northwe... The Yangbajain Geothermal Field in Tibet is located in the fault subsidence basin of the central Yadong-Gulu Rift Valley.The spatial distribution of the field is controlled by mountain-front fault zones on the northwestern and southeastern sides of the basin.Geothermal power has been generated in Yangbajain for more than 40 years.However,owing to the lack of threedimensional(3D) geophysical exploration data,key geological issues related to the partial melt body of the Yangbajain Geothermal Field,such as its location,burial depth,and geometric form,as well as the ascending channel of the geothermal fluid,have for a long time been controversial.In this study,3D inversion was performed using measured geo-electromagnetic total impedance tensor data from 47 survey points.The extracted horizontal sections at different depths and profiles,and at different lines,reflect the 3D electrical structure model of the geothermal field in the study area.Subsequently,three findings were obtained.First,the partial melt body,located below the China-Nepal Highway extending along the northeast direction,is the heat source of the Yangbajain Geothermal Field.The burial depth range of the molten body was determined to range between approximately 6.2 and 14 km.Moreover,the geothermal fluid ascended a horn-shaped circulation channel with an up-facing opening,located in the northern section of the sulfur ditch area.The study results revealed that deep rock fissures(>2 km) were not well developed and had poor permeability.In addition,no layered heat reservoirs with high water richness were observed in the northern part of the study area.However,the application of enhanced geothermal system(EGS) technology in the northern region would be essential to improving the power generation capacity of the Yangbajain Geothermal Field.In addition,the study found no deep high-temperature heat storage areas in the southern region of the study area. 展开更多
关键词 Geothermal field MAGNETOTELLURIC Partial melt body 3D electrical structure Thermal reservoir geological model
原文传递
SOLIDWORKS Electrical在通过式脚踏封口机自动化改造设计中的应用
8
作者 董改花 赵家硕 +1 位作者 王晓兰 郭秀华 《工业控制计算机》 2024年第6期90-92,共3页
小型企业塑封工艺中通过式脚踏封口机应用广泛,但在塑封重型工件时,工人操作非常费力且次品率高,无法保障塑封质量,为此对其进行机构优化与软硬件设计自动化改造。利用SOLIDWORKS Electrical快速建立3D虚拟电气配盘与生成各类BOM清单,... 小型企业塑封工艺中通过式脚踏封口机应用广泛,但在塑封重型工件时,工人操作非常费力且次品率高,无法保障塑封质量,为此对其进行机构优化与软硬件设计自动化改造。利用SOLIDWORKS Electrical快速建立3D虚拟电气配盘与生成各类BOM清单,大大缩短了研发周期,安装人员还可以根据虚拟电气装配路径进行准确安装。最终设计出结构合理,满足生产工艺要求的自动化装置,企业以极少改造成本提质增效,为机电一体化装置自动化设计提供了一个高效开发途径。 展开更多
关键词 脚踏封口机 自动化改造 SOLIDWORKS electrical
下载PDF
Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model 被引量:1
9
作者 Sen Wang Siqi Yao +8 位作者 Na Pei Luge Bai Zhiyan Hao Dichen Li Jiankang He J.Miguel Oliveira Xiaoyan Xue Ling Wang Xinggang Mao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期307-319,共13页
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ... Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology. 展开更多
关键词 HYPOXIA GLIOMA three-dimensional glioma model In vitro
下载PDF
Three-dimensional cell-based strategies for liver regeneration 被引量:1
10
作者 DAN GUO XI XIA JIAN YANG 《BIOCELL》 SCIE 2024年第7期1023-1036,共14页
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap... Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care. 展开更多
关键词 three-dimensional Liver regeneration ORGANOIDS Stem cells Cell therapy
下载PDF
Reliability evaluation of IGBT power module on electric vehicle using big data 被引量:1
11
作者 Li Liu Lei Tang +5 位作者 Huaping Jiang Fanyi Wei Zonghua Li Changhong Du Qianlei Peng Guocheng Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期50-60,共11页
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction... There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system. 展开更多
关键词 IGBT junction temperature neural network electric vehicles big data
下载PDF
The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury 被引量:3
12
作者 Dingyue Ju Chuanming Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1751-1758,共8页
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t... Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury. 展开更多
关键词 BIOMATERIALS embryonic stem cells induced pluripotent stem cells mesenchymal stem cells nerve regeneration spinal cord injury stem cell therapy stem cells three-dimensional bioprinting
下载PDF
Reducing Operation Emissions and Improving Work Efficiency Using a Pure Electric Wheel Drive Tractor 被引量:1
13
作者 Chang-Kai Wen Wen Ren +5 位作者 Qing-Zhen Zhu Chun-Jiang Zhao Zhen-Hao Luo Sheng-Li Zhang Bin Xie Zhi-Jun Meng 《Engineering》 SCIE EI CAS CSCD 2024年第6期230-245,共16页
In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,inc... In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,including an electric motor drive system,a battery ballast system,and an electro–hydraulic suspension system.This paper develops a dynamics model of an electric tractor-ploughing unit under complex soil conditions,leading to the proposal of an active control method for drive wheel torque and a joint control method for the traction force of the suspension system and the front-and rear-axle loads of a tractor.Finally,the tractor is prototyped and assembled,and ploughing tests are carried out.The ploughing results show that the active torque-distribution control method proposed in this study reduces the tractor slip by 14.83%and increases the traction efficiency by 10.28%compared with the average torquedistribution mode.Compared with the conventional traction control mode,the joint control method for traction and ballast proposed in this paper results in a 3.7%increase in traction efficiency,a 15.05%decrease in slip,and a 4.9%reduction in total drive motor energy consumption.This study will help to improve the operation quality and traction efficiency of electric tractors in complex soil conditions. 展开更多
关键词 electric tractor Ploughing unit Torque distribution Active ballast Traction performance
下载PDF
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation 被引量:1
14
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 Poly(p-phenylene-2 6-benzobisoxazole)nanofiber Boron nitride Thermal conductivity electrical insulation
下载PDF
Safety and effectiveness of neuromuscular electrical stimulation in cardiac surgery:A systematic review 被引量:2
15
作者 Christos Kourek Marios Kanellopoulos +4 位作者 Vasiliki Raidou Michalis Antonopoulos Eleftherios Karatzanos Irini Patsaki Stavros Dimopoulos 《World Journal of Cardiology》 2024年第1期27-39,共13页
BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction an... BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery,and may be a risk factor for prolonged duration of mechanical ventilation,associated with a higher risk of readmission and higher mortality.Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay.Neuromuscular electrical stimulation(NMES)is an alternative modality of exercise in patients with muscle weakness.A major advantage of NMES is that it can be applied even in sedated patients in the ICU,a fact that might enhance early mobilization in these patients.AIM To evaluate safety,feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery.METHODS We performed a search on Pubmed,Physiotherapy Evidence Database(PEDro),Embase and CINAHL databases,selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials(RCTs)that included implementation of NMES in patients before after cardiac surgery.RCTs were assessed for methodological rigor and risk of bias via the PEDro.The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function.RESULTS Ten studies were included in our systematic review,resulting in 703 participants.Almost half of them performed NMES and the other half were included in the control group,treated with usual care.Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery.Functional capacity was assessed in 8 studies via 6MWT or other indices,and improved only in 1 study before and in 1 after cardiac surgery.Nine studies explored the effects of NMES on muscle strength and function and,most of them,found increase of muscle strength and improvement in muscle function after NMES.NMES was safe in all studies without any significant complication.CONCLUSION NMES is safe,feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery,but has no significant effect on functional capacity. 展开更多
关键词 Neuromuscular electrical stimulation Cardiac surgery coronary artery bypass grafting Heart valve replacement Peak VO2 SAFETY
下载PDF
A new electric field mill array with each of the mill’s rotor controlled precisely by a GPS module:Equipment and initial results
16
作者 Kozo Yamashita Hironobu Fujisaka +4 位作者 DaoHong Wang Hiroyuki Iwasaki Kazuo Yamamoto Koichiro Michimoto Masashi Hayakawa 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期423-435,共13页
We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote... We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array. 展开更多
关键词 LIGHTNING electrostatic field electric field mill electric field change
下载PDF
A theory for three-dimensional response of micropolar plates
17
作者 Dianwu HUANG Linghui HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1403-1414,共12页
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu... Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail. 展开更多
关键词 micropolar plate TRANSFER-MATRIX asymptotic expansion three-dimensional response
下载PDF
Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa
18
作者 Sam Enayati Karen Chang +10 位作者 Anton Lennikov Menglu Yang Cherin Lee Ajay Ashok Farris Elzaridi Christina Yen Kasim Gunes Jia Xie Kin-Sang Cho Tor Paaske Utheim Dong Feng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2543-2552,共10页
Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on pho... Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival.This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation(tcES)in mice affected by inherited retinal degeneration.Additionally,the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans.In this study,we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular,sine,and ramp waveforms.To investigate the functional effects of electrical stimulation on photoreceptors,we used human retinal explant cultures and rhodopsin knockout(Rho^(-/-))mice,demonstrating progressive photoreceptor degeneration with age.Human retinal explants isolated from the donors’eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro.Photoreceptor density was evaluated by rhodopsin immunolabeling.In vivo Rho^(-/-)mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms.Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response(OMR),respectively.Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas.Oscilloscope recordings indicated effective delivery of rectangular,sine,and ramp waveforms to the retina by transcorneal electrical stimulation,of which the ramp waveform required the lowest voltage.Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes.The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro(~0.5-1.5°C).Electrical stimulation increased photoreceptor survival in human retinal explant cultures,particularly at the ramp waveform.Transcorneal electrical stimulation(rectangular+ramp)waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results.Histology and immunolabeling demonstrated increased photoreceptor survival,improved outer nuclear layer thickness,and increased bipolar cell sprouting in Rho^(-/-)mice.These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina,improves photoreceptor survival in both human and mouse retinas,and increases visual function in Rho^(-/-)mice.Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion. 展开更多
关键词 bipolar cells electrical stimulation NEUROPROTECTION photoreceptor degeneration RETINA retinal explants retinitis pigmentosa transcorneal electrical stimulation WAVEFORM
下载PDF
Development of a toroidal soft x-ray imaging system and application for investigating three-dimensional plasma on J-TEXT
19
作者 赵传旭 李建超 +9 位作者 张晓卿 王能超 丁永华 杨州军 江中和 严伟 李杨波 毛飞越 任正康 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期94-99,共6页
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat... A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma. 展开更多
关键词 SXR imaging J-TEXT tokamak three-dimensional measurement MHD
下载PDF
Superposition of dual electric fields in covalent organic frameworks for efficient photocatalytic hydrogen evolution
20
作者 Chao Li Shuo Wang +8 位作者 Yuan Liub Xihe Huang Yan Zhuang Shuhong Wu Ying Wang Na Wen Kaifeng Wu Zhengxin Ding Jinlin Long 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期164-175,共12页
Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen ... Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis. 展开更多
关键词 Covalent organic framework Internal molecular electric field Internal bond electric field PHOTOCATALYSIS Hydrogen evolution
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部