In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination...In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.展开更多
Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering appl...Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering applications. A three-dimensional anisotropic heterogeneous steady random seepage model was developed on the basis of the finite element method. A statistical analysis of the distribution characteristics of soil parameters sampled from the main embankment of the Yangtze River in the Southern Jingzhou zone of China was conducted. The Kolomogorov-Smirnov test verified the statistical hypothesis that the permeability coefficient tensor has a Gaussian distribution. With the help of numerical analysis of the stochastic seepage field using the developed model, various statistical and random characteristics of the stochastic seepage field of the main embankment of the Yangtze River in the Southern Jingzhou zone of China were investigated. The model was also examined with statistical testing. Through the introduction of random variation of the upstream and downstream water levels into the model, the effects of the boundary randomness due to variation of the downstream and upstream water levels on the variation of simulated results presented with a vector series of the random seepage field were analyzed. Furthermore, the combined influence of the variation of the soil permeability coefficient and such seepage resistance measures as the cut-off wall and relief ditch on the hydraulic head distribution was analyzed and compared with the results obtained by determinate analysis. Meanwhile, sensitivities of the hydraulic gradient and downstream exit height to the variation of boundary water level were studied. The validity of the simulated results was verified by stochastic testing and measured data. The developed model provides more detail and a full stochastic algorithm to characterize and analyze three-dimensional stochastic seepage field problems.展开更多
The h-version adaptive finite element method for 3-D seepage problem ispresented in this paper. The adaptive system includes 4 modules; 3-D mesh generation, finite elementanalysis for 3-D seepage, mesh error estimatio...The h-version adaptive finite element method for 3-D seepage problem ispresented in this paper. The adaptive system includes 4 modules; 3-D mesh generation, finite elementanalysis for 3-D seepage, mesh error estimation and post-process. The effectiveness of this systemis verified by the given example.展开更多
Three-dimensional(3D) single-layer microcoils have always been a key element for electromagnetic systems;but they lack an easy and accurate method to calculate the inductance value for their complex 3D micro-structure...Three-dimensional(3D) single-layer microcoils have always been a key element for electromagnetic systems;but they lack an easy and accurate method to calculate the inductance value for their complex 3D micro-structures. This paper employed a curve-fitting process to obtain the associated equation for the inductance value and geometric parameters based on the simulation results. The correction factors regarding helical pitch and wire diameter were reviewed,which are used for compensation in the Nagaoka formula. The simulation process numerically simulated the performance of the 3D microcoils using a FEM electro-magnetic-coupled analysis method. Comparison of the simulated inductance value and the Nagaoka formula was undertaken,which shows that the helical pitch and wire diameter contribute a main role in the calculation error. The derived formula was expressed in a concise form to precisely calculate the inductance value of 3D microsolenoids with single-layer coils.展开更多
Based on the basic principle of the finite element method, the implicit composite element method for numerical simulation of seepage in underground engineering is proposed. In the simulation, the faults and drainage h...Based on the basic principle of the finite element method, the implicit composite element method for numerical simulation of seepage in underground engineering is proposed. In the simulation, the faults and drainage holes are set implicitly in the model elements without adding additional elements. Elements containing fault or drainage-hole data are termed composite elements. Then, their information data in model could be obtained. By determining the osmotic transmission matrix of the composite elements, the permeability coefficient matrix is then obtained. The method was applied to the numerical simulation of the seepage field around the underground powerhouse of the Ganhe Pumping Station in Yunnan, China, using a compiled three-dimensional finite element method calculation program. The rock mass around the site includes two faults. The seepage field in the rock mass was analyzed at different stages of the engineering project. The results show that, before the excavation of the underground caverns, the rock mass seepage is affected by the faults and the groundwater permeated down along the tangential fault plane. After the excavation of the caverns during the operation period, the groundwater is basically drained away and the underground caverns are mostly above the groundwater level. Thus, the calculation results of the engineering example verify the implicit composite method for the simulation of faults and drainage holes. This method can well meet the calculation demands of practical engineering.展开更多
基金Project(2017YFC0404802)supported by the National Key R&D Program of ChinaProjects(U1965206,51979143)supported by the National Natural Science Foundation of China。
文摘In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.
基金supported by the National Natural Science Foundation of China (Grant No. 50379046)the Doctoral Fund of the Ministry of Education of China (Grant No. A50221)
文摘Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering applications. A three-dimensional anisotropic heterogeneous steady random seepage model was developed on the basis of the finite element method. A statistical analysis of the distribution characteristics of soil parameters sampled from the main embankment of the Yangtze River in the Southern Jingzhou zone of China was conducted. The Kolomogorov-Smirnov test verified the statistical hypothesis that the permeability coefficient tensor has a Gaussian distribution. With the help of numerical analysis of the stochastic seepage field using the developed model, various statistical and random characteristics of the stochastic seepage field of the main embankment of the Yangtze River in the Southern Jingzhou zone of China were investigated. The model was also examined with statistical testing. Through the introduction of random variation of the upstream and downstream water levels into the model, the effects of the boundary randomness due to variation of the downstream and upstream water levels on the variation of simulated results presented with a vector series of the random seepage field were analyzed. Furthermore, the combined influence of the variation of the soil permeability coefficient and such seepage resistance measures as the cut-off wall and relief ditch on the hydraulic head distribution was analyzed and compared with the results obtained by determinate analysis. Meanwhile, sensitivities of the hydraulic gradient and downstream exit height to the variation of boundary water level were studied. The validity of the simulated results was verified by stochastic testing and measured data. The developed model provides more detail and a full stochastic algorithm to characterize and analyze three-dimensional stochastic seepage field problems.
文摘The h-version adaptive finite element method for 3-D seepage problem ispresented in this paper. The adaptive system includes 4 modules; 3-D mesh generation, finite elementanalysis for 3-D seepage, mesh error estimation and post-process. The effectiveness of this systemis verified by the given example.
基金supported by the National Science Foundation of China under the Grant No.61176113 and 51335008the Special-funded program on national key scientific instruments and equipment development of China under the Grant No.2012YQ12004706the Program for Changjiang Scholars and Innovative Research Team in University(IRT1033)。
文摘Three-dimensional(3D) single-layer microcoils have always been a key element for electromagnetic systems;but they lack an easy and accurate method to calculate the inductance value for their complex 3D micro-structures. This paper employed a curve-fitting process to obtain the associated equation for the inductance value and geometric parameters based on the simulation results. The correction factors regarding helical pitch and wire diameter were reviewed,which are used for compensation in the Nagaoka formula. The simulation process numerically simulated the performance of the 3D microcoils using a FEM electro-magnetic-coupled analysis method. Comparison of the simulated inductance value and the Nagaoka formula was undertaken,which shows that the helical pitch and wire diameter contribute a main role in the calculation error. The derived formula was expressed in a concise form to precisely calculate the inductance value of 3D microsolenoids with single-layer coils.
基金supported by the National Key Basic Research Program of China(Grant No.2015CB057904)the Major Program of the National Natural Science Foundation of China(Grant No.91215301)+1 种基金the National Natural Science Foundation of China(Grant Nos.51279136&51209164)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130141110015)
文摘Based on the basic principle of the finite element method, the implicit composite element method for numerical simulation of seepage in underground engineering is proposed. In the simulation, the faults and drainage holes are set implicitly in the model elements without adding additional elements. Elements containing fault or drainage-hole data are termed composite elements. Then, their information data in model could be obtained. By determining the osmotic transmission matrix of the composite elements, the permeability coefficient matrix is then obtained. The method was applied to the numerical simulation of the seepage field around the underground powerhouse of the Ganhe Pumping Station in Yunnan, China, using a compiled three-dimensional finite element method calculation program. The rock mass around the site includes two faults. The seepage field in the rock mass was analyzed at different stages of the engineering project. The results show that, before the excavation of the underground caverns, the rock mass seepage is affected by the faults and the groundwater permeated down along the tangential fault plane. After the excavation of the caverns during the operation period, the groundwater is basically drained away and the underground caverns are mostly above the groundwater level. Thus, the calculation results of the engineering example verify the implicit composite method for the simulation of faults and drainage holes. This method can well meet the calculation demands of practical engineering.