The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t...The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.展开更多
The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three ...The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics.展开更多
[Objective] This study aimed to establish an efficient process for separation of phycoerythrin by using Q Sepharose Fast Flow resin and verity its feasibility for scale-up. [Method] Elution gradient, sample volume and...[Objective] This study aimed to establish an efficient process for separation of phycoerythrin by using Q Sepharose Fast Flow resin and verity its feasibility for scale-up. [Method] Elution gradient, sample volume and flow rate were optimized to determine the optimal separation condition, under which the scale-up process was verified. [Result] The optimal condition for separation of phycoerythrin by using Q Sepharose FF resin was investigated: 30 ml of laver extract was loaded to the Q Sepharose FF column with a bed volume of 8 ml; subsequently, the column was stepwise eluted with 0-0.10-0.35-1.00 mol/L NaCI solution (pH 6.0) at a constant flow rate of 1 ml/min; the elution peak under 0.35 mol/L NaCI solution was collected, and the recovery rate and purity coefficient (A565/A280) of phycoerythrin were determined as 44.3 and 1.15, respectively. Based on the established process, 75 ml of phycoerythrin extract was loaded to the Q Sepharose FF column with a bed volume of 20 ml for separation, while no significant variation was observed in the separation result. [Conclusion] Phycoerythrin can be well separated from laver extract by using Q Sepharose FF resin and the process is feasible for scale-up.展开更多
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ...The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.展开更多
Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a fl...Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model's aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16-. However, significant changes can be achieved with actuation when the model's angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow.展开更多
The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model...The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.展开更多
This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, t...This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl.展开更多
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed...Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.展开更多
The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theor...The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows.展开更多
The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and...The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and separated flow.In order to study the mechanism of NS-DBD plasma flow separation control over a swept wing,especially the influence of the actuation frequency,at first,experimental studies of the actuation frequencies at 100 Hz are conducted to validate the numerical simulation method.Then,numerical studies of different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted.The interaction between the plasma-induced vortexes and the separated flow is analyzed.Results show that there is a range of the actuation frequency which includes the frequency(160 Hz) calculated by the average aerodynamic chord length to make the control effect good,but when the actuation frequencies are too low(50 Hz) or too high(1000 Hz),the control effect will get worse.The former is because plasmainduced vortexes disappear in a period within an actuation cycle;the latter is because plasma-induced vortexes cannot develop completely,resulting in a weak vortex intensity.展开更多
In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-...In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β Re and λ on the velocity field are discussed through graphs.展开更多
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is...This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.展开更多
The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and th...The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively.展开更多
Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas i...Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa.展开更多
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT...The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.展开更多
Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at dis...Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.展开更多
This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed fo...This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other.展开更多
An improved rotating microchannel(IRM) separator was further explored in the intensification for demulsification and separation process. Oil-in-water(O/W) emulsion system of 2-ethylhexyl phosphoric acid-2-ethylhexyl e...An improved rotating microchannel(IRM) separator was further explored in the intensification for demulsification and separation process. Oil-in-water(O/W) emulsion system of 2-ethylhexyl phosphoric acid-2-ethylhexyl ester(P507)–water without emulsifier was employed to evaluate the performance of the new equipment. In this experiment, the influence on demulsification separation process was explored by changing the geometrical structure and channel height of the microchannel and combining the liquid–liquid two-phase flow pattern, and the correlation general graph between demulsification efficiency and dimensionless parameters was established. The total demulsification effect of the IRM and the separation capacity of the clear organic phase recovered from demulsification are significantly improved. In addition, the liquid–liquid two-phase flow pattern of the clear organic phase after demulsification and the remaining emulsion in the IRM are observed and recorded by high-speed photography. The separation ability of organic phase from the upper outlet can be significantly improved when the total demulsification rate of IRM is up to 90%. There are 3 types and 6 kinds of flow patterns observed. The results demonstrated that the suitable demulsification performance is obtained when the liquid–liquid two-phase inside the IRM is in a parallel pattern. Finally, the relation map between total demulsification efficiency and the universal flow is drawn, which provides a basis for the accurate control of the IRM device.展开更多
The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the...The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.展开更多
Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow...Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42027806 and 42041006)。
文摘The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.
文摘The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics.
基金Supported by National Natural Science Foundation of China(51143012)Natural Science Foundation of Shandong Province(ZR2009BM006)~~
文摘[Objective] This study aimed to establish an efficient process for separation of phycoerythrin by using Q Sepharose Fast Flow resin and verity its feasibility for scale-up. [Method] Elution gradient, sample volume and flow rate were optimized to determine the optimal separation condition, under which the scale-up process was verified. [Result] The optimal condition for separation of phycoerythrin by using Q Sepharose FF resin was investigated: 30 ml of laver extract was loaded to the Q Sepharose FF column with a bed volume of 8 ml; subsequently, the column was stepwise eluted with 0-0.10-0.35-1.00 mol/L NaCI solution (pH 6.0) at a constant flow rate of 1 ml/min; the elution peak under 0.35 mol/L NaCI solution was collected, and the recovery rate and purity coefficient (A565/A280) of phycoerythrin were determined as 44.3 and 1.15, respectively. Based on the established process, 75 ml of phycoerythrin extract was loaded to the Q Sepharose FF column with a bed volume of 20 ml for separation, while no significant variation was observed in the separation result. [Conclusion] Phycoerythrin can be well separated from laver extract by using Q Sepharose FF resin and the process is feasible for scale-up.
基金the National Natural Science Foundation of China(Nos.51974065 and 52274257)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMMKJSKL-2020-13)the Fundamental Research Funds for the Central Universities(Nos.N2201008 and N2201004).
文摘The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.
基金supported by Funding of Jiangsu Innovation Program for Graduate Education(No. KYLX16_0310)the Fundamental Research Funds for the Central Universities (No. NP2016406)+1 种基金supported by Graduate Innovation Center in NUAA (No. kfjj20170117)China Postdoctoral Science Foundation (No. 2017M610325)
文摘Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model's aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16-. However, significant changes can be achieved with actuation when the model's angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51509178 and 51509177)the Natural Science Foundation of Tianjin City(Grant No.14JCYBJC22100)the Natural Science Foundation of Tianjin Education Commission(Grant No.2017KJ046)
文摘The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.
文摘This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.
基金supported by the National Natural Science Foundation of China(Nos.11372340 and 11732016)
文摘The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows.
基金National Science and Technology Major Project (No.J2019-Ⅱ-0014-0035)Academician Workstation Foundation of the Green Aerotechnics Research Institute of Chonging Jiaotong University (No. GATRI2020C06003)。
文摘The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and separated flow.In order to study the mechanism of NS-DBD plasma flow separation control over a swept wing,especially the influence of the actuation frequency,at first,experimental studies of the actuation frequencies at 100 Hz are conducted to validate the numerical simulation method.Then,numerical studies of different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted.The interaction between the plasma-induced vortexes and the separated flow is analyzed.Results show that there is a range of the actuation frequency which includes the frequency(160 Hz) calculated by the average aerodynamic chord length to make the control effect good,but when the actuation frequencies are too low(50 Hz) or too high(1000 Hz),the control effect will get worse.The former is because plasmainduced vortexes disappear in a period within an actuation cycle;the latter is because plasma-induced vortexes cannot develop completely,resulting in a weak vortex intensity.
文摘In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β Re and λ on the velocity field are discussed through graphs.
基金Project supported by the Executive Agency for Higher Education Research Development and Innovation Funding of Romania(No.PN-III-P4-PCE-2021-0993)。
文摘This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.
基金This project is supported by National Natural Science Foundation of China (No.50275089)
文摘The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively.
基金Funding Statement:This work was supported by the National Key Research and Development Program of China[Grant No.2019YFC1906802].
文摘Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa.
文摘The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.
基金the National Key Basic Research Program of China(No.2012CB214904)the National Natural Science Foundation of China for Innovative Research Group(No.51221462)+2 种基金the National Natural Science Foundation of China(Nos.51304196,51134022,and 51174203)the Natural Science Foundation of Jiangsu Province of China(No. BK2012136)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120095130001)
文摘Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.
基金supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah,Saudi Arabia (No. 2-135/HiCi)
文摘This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other.
文摘An improved rotating microchannel(IRM) separator was further explored in the intensification for demulsification and separation process. Oil-in-water(O/W) emulsion system of 2-ethylhexyl phosphoric acid-2-ethylhexyl ester(P507)–water without emulsifier was employed to evaluate the performance of the new equipment. In this experiment, the influence on demulsification separation process was explored by changing the geometrical structure and channel height of the microchannel and combining the liquid–liquid two-phase flow pattern, and the correlation general graph between demulsification efficiency and dimensionless parameters was established. The total demulsification effect of the IRM and the separation capacity of the clear organic phase recovered from demulsification are significantly improved. In addition, the liquid–liquid two-phase flow pattern of the clear organic phase after demulsification and the remaining emulsion in the IRM are observed and recorded by high-speed photography. The separation ability of organic phase from the upper outlet can be significantly improved when the total demulsification rate of IRM is up to 90%. There are 3 types and 6 kinds of flow patterns observed. The results demonstrated that the suitable demulsification performance is obtained when the liquid–liquid two-phase inside the IRM is in a parallel pattern. Finally, the relation map between total demulsification efficiency and the universal flow is drawn, which provides a basis for the accurate control of the IRM device.
文摘The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.
基金National Natural Science Foundation of China(Nos.50676094,50676095,50776086 and 50736007)Fundamental Researches of National Defense in Chinese Academy of Sciences(No.AB20070090)
文摘Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.