Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ...Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.展开更多
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migr...From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection.展开更多
BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To ...BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To investigate the effects of nursing interventions with three-dimensional quality assessment on the efficacy and disease management ability of patients undergoing esophageal cancer surgery.METHODS In this prospective study,the control group received routine nursing,and the intervention group additionally received a three-dimensional quality assessment intervention based on the above routine care.Self-efficacy and patient disease management abilities were evaluated using the General Self-Efficacy Scale(GSES)and Exercise of Self-Care Agency scale,respectively.IBM SPSS Statistics for Windows,version 17.0,was used for the data processing.RESULTS This study recruited 112 patients who were assigned to the control and experi-mental groups(n=56 per group).Before the intervention,there was no significant difference in GSES scores between the two groups(P>0.05).After the inter-vention,the GSES scores of both groups increased,with the experimental group showing higher values(P<0.05).At the time of discharge and three months after discharge,the scores for positive attitudes,self-stress reduction,and total score of health promotion in the experimental group were higher than those in the control group(P<0.05).CONCLUSION The implementation of a three-dimensional quality structure model for postoperative patients with esophageal cancer can effectively improve their self-management ability and self-efficacy of postoperative patients.展开更多
Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface ex...Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards.展开更多
Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relat...Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method.展开更多
We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the p...We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the precision of the model,we considered the data gap between the ground and satellite data.We compared and analyzed the results of the Taylor polynomial,surface Spline,and CHAOS-6(the CHAMP,?rsted and SAC-C model of Earth’s magnetic field)gradient models.Results showed that the gradients in the south-north and east-west directions of the four models were consistent.The 3DSS model was able to express not only gradients at different altitudes,but also average gradients inside the research area.The two Spline models were able to capture more information on gradient anomalies than were the fitted models.Strong local anomalies were observed in northern Xinjiang,Beijing,and the junction area between Jiangsu and Zhejiang,and the total intensity F decreased whereas the altitude increased.The gradient decreased by 21.69%in the south-north direction and increased by 11.78%in the east-west direction.In addition,the altitude gradient turned from negative to positive while the altitude increased.The Spline model and the two fitted models differed mainly in the field sources they expressed and the modeling theory.展开更多
Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative ex...Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative execution.Methods Thirty-one patients scheduled for RAPN by four experienced urologists were enrolled in a prospective study.Prior to surgery,urologists reviewed the IRIS™three-dimensional model on an iphone Operating System(iOS)app and completed a questionnaire outlining their surgical plan including surgical approach,and ischemia technique as well as confidence in executing this plan.Postoperatively,questionnaires assessing the procedural approach,clinical utility,efficiency,and effectiveness of IRIS™were completed.The degree of overlap between the preoperative and intraoperative questionnaires and between the planned approach and actual execution of the procedure was analyzed.Questionnaires were answered on a 5-point Likert scale and scores of 4 or greater were considered positive.Results Mean age was 65.1 years with a mean tumor size of 27.7 mm(interquartile range 17.5-44.0 mm).Hilar tumors consisted of 32.3%;48.4%of patients had R.E.N.A.L.nephrometry scores of 7-9.On preoperative questionnaires,the surgeons reported that in 67.7%cases they were confident that they can perform the procedure successfully,and on intraoperative questionnaires,the surgeons reported that in 96.8%cases IRIS™helped achieve good spatial sensation of the anatomy.There was a high degree of overlap between preoperative and intraoperative questionnaires for the surgical approach,interpreting anatomical details and clinical utility.When comparing plans for selective or off-clamp,the preoperative plan was executed in 90.0%of cases intraoperatively.Conclusion A high degree of overlap between the preoperative surgical approach and intraoperative RAPN execution was found using IRIS™.This is the first study to evaluate the predictive accuracy of IRIS™during RAPN by comparing preoperative plan and intraoperative execution.展开更多
In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare co...In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.展开更多
A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar...A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.展开更多
A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve...A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.展开更多
Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward ...Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward modeling of point and line sources was conducted by using the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method. Then, the damping least square method was used in the 3D inversion of the formation resistivity data. Several geological models were considered in the forward modeling and inversion. The forward modeling results suggest that the potentials generated by the two sources have different surface signatures. The inversion data suggest that the low- resistivity anomaly is outlined better than the high-resistivity anomaly. Moreover, when the point source is under the anomaly, the resistivity anomaly boundaries are better outlined than when using a line source.展开更多
The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surf...The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surface-borehole observation device for leakage electric fi eld detection to achieve rapid measurement of the electric fi eld distribution characteristics at ground level in the foundation pit,thus enabling rapid localization of leakage points.We first establish the mechanism and basic equation of the leakage electric field response by combining the electric field formed by electrokinetic effect(EK)and the stable electric fi eld formed by conduction current in a combined leakage channel.Then,the fi nite–infi nite element coupling method is used to solve the electric fi eld equation to simulate the responses of a three-dimensional foundation pit leakage model.Furthermore,we conduct numerical simulations of diff erent pit models to investigate the infl uencing factors of the detection device and response characteristics of the change in the properties of the leakage channel.The results demonstrate that the proposed joint surface-borehole observation device can effi ciently reveal anomalous potential caused by leakage,and the amplitude of the electric fi eld generated by EK can eff ectively strengthen the leakage electric fi eld signal at the leakage,thus improving detection accuracy and effi ciency.展开更多
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize t...This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.展开更多
BACKGROUND Three-dimensional(3D)modelling technology translates the patient-specific anatomical information derived from two-dimensional radiological images into virtual or physical 3D models,which more closely resemb...BACKGROUND Three-dimensional(3D)modelling technology translates the patient-specific anatomical information derived from two-dimensional radiological images into virtual or physical 3D models,which more closely resemble the complex environment encountered during surgery.It has been successfully applied to surgical planning and navigation,as well as surgical training and patient education in several surgical specialties,but its uptake lags behind in colorectal surgery.Rectal cancer surgery poses specific challenges due to the complex anatomy of the pelvis,which is difficult to comprehend and visualise.AIM To review the current and emerging applications of the 3D models,both virtual and physical,in rectal cancer surgery。METHODS Medline/PubMed,Embase and Scopus databases were searched using the keywords“rectal surgery”,“colorectal surgery”,“three-dimensional”,“3D”,“modelling”,“3D printing”,“surgical planning”,“surgical navigation”,“surgical education”,“patient education”to identify the eligible full-text studies published in English between 2001 and 2020.Reference list from each article was manually reviewed to identify additional relevant papers.The conference abstracts,animal and cadaveric studies and studies describing 3D pelvimetry or radiotherapy planning were excluded.Data were extracted from the retrieved manuscripts and summarised in a descriptive way.The manuscript was prepared and revised in accordance with PRISMA 2009 checklist.RESULTS Sixteen studies,including 9 feasibility studies,were included in the systematic review.The studies were classified into four categories:feasibility of the use of 3D modelling technology in rectal cancer surgery,preoperative planning and intraoperative navigation,surgical education and surgical device design.Thirteen studies used virtual models,one 3D printed model and 2 both types of models.The construction of virtual and physical models depicting the normal pelvic anatomy and rectal cancer,was shown to be feasible.Within the clinical context,3D models were used to identify vascular anomalies,for surgical planning and navigation in lateral pelvic wall lymph node dissection and in management of recurrent rectal cancer.Both physical and virtual 3D models were found to be valuable in surgical education,with a preference for 3D printed models.The main limitations of the current technology identified in the studies were related to the restrictions of the segmentation process and the lack of 3D printing materials that could mimic the soft and deformable tissues.CONCLUSION 3D modelling technology has potential to be utilised in multiple aspects of rectal cancer surgery,however,it is still at the experimental stage of application in this setting.展开更多
In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteri...In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteristics of SBTEM responses for complex geoelectrical models.To solve the double-curl diff usion equation for the electric fi eld,we use an unstructured tetrahedral mesh to discretize the model domain and select the unconditionally stable backward Euler scheme to discretize the time derivative.In our numerical experiments,we use a grounded wire as a transmitting source.After validating the algorithm’s eff ectiveness,we first analyze the diffusion characteristics and detectability of the electromagnetic field.After that,we focus our attention on the distribution and the cause of zero bands for Ex and dBy/dt components with the hope of guiding future field surveys.Finally,by simulating diff erent models,we analyze the capability of the SBTEM method in detecting typical mineral veins so that we can provide a reference for mineral resource exploration in the deep earth.展开更多
The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.I...The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.It is hard to reflect the spatial structure and characteristics of Horne orebody directly.In this paper,GIS was used to digitize the mining plan-view maps at different depths,stope maps,the boundary of the massive sulfide in drilling trajectories as well as the grade data of Au and Cu of Horne deposit.Meanwhile,the authors established the grade attribute database.Subsequently the three-dimensional(3D)geological model and grade attribute model of Horne orebody were established by Geological Object Computer Aided Design(GOCAD).Positions of two vents and directions of hydrothermal alteration in Horne deposit were inferred based on the property of the major fault,characteristics of hydrothermal alteration,the enrichment morphology and spatial distribution of high-grade Cu in the Cu attribute model.展开更多
Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a...Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.展开更多
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear...The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.展开更多
This paper presents a hybrid model for three-dimensional Geographical Information Systems which is an integration of surface- and volume-based models. The Triangulated Irregular Network (TIN) and octree models are int...This paper presents a hybrid model for three-dimensional Geographical Information Systems which is an integration of surface- and volume-based models. The Triangulated Irregular Network (TIN) and octree models are integrated in this hybrid models. The TIN model works as a surface-based model which mainly serves for surface presentation and visualization. On the other hand, the octree encoding supports volumetric analysis. The designed data structure brings a major advantage in the three-dimensional selective retrieval. This technique increases the efficiency of three-dimensional data operation.展开更多
基金supported by the National Natural Science Foundation of China (No. 52275291)the Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province,China (No. 2023-CX-TD-17)
文摘Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
基金supported by the National Natural Science Foundation of China(Grant No.42025403)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2023074).
文摘From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection.
文摘BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To investigate the effects of nursing interventions with three-dimensional quality assessment on the efficacy and disease management ability of patients undergoing esophageal cancer surgery.METHODS In this prospective study,the control group received routine nursing,and the intervention group additionally received a three-dimensional quality assessment intervention based on the above routine care.Self-efficacy and patient disease management abilities were evaluated using the General Self-Efficacy Scale(GSES)and Exercise of Self-Care Agency scale,respectively.IBM SPSS Statistics for Windows,version 17.0,was used for the data processing.RESULTS This study recruited 112 patients who were assigned to the control and experi-mental groups(n=56 per group).Before the intervention,there was no significant difference in GSES scores between the two groups(P>0.05).After the inter-vention,the GSES scores of both groups increased,with the experimental group showing higher values(P<0.05).At the time of discharge and three months after discharge,the scores for positive attitudes,self-stress reduction,and total score of health promotion in the experimental group were higher than those in the control group(P<0.05).CONCLUSION The implementation of a three-dimensional quality structure model for postoperative patients with esophageal cancer can effectively improve their self-management ability and self-efficacy of postoperative patients.
基金Supported by Key Research and Development Project of Guangxi Pr ovince(No.AB21196028).
文摘Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards.
基金The National Natural Science Foundation of China (No.52165060,12272189)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region: (NJYT23022)+2 种基金Science and Technology Projects of Inner Mongolia Autonomous Region: (2021GG0432)Central Guiding Local Science and Technology Development Plan (2022ZY0013)Basic research business fee project for universities directly under Inner Mongolia Autonomous Region (GXKY22046).
文摘Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method.
基金the support of the National Natural Science Foundation of China(Nos.41974073,41404053)the Macao Foundation and the pre-research project of Civil Aerospace Technologies(Nos.D020308 and D020303)+2 种基金funded by the National Space Administration of Chinathe opening fund of the State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology,Macao Science and Technology Development Fund No.119/2017/A3)the Specialized Research Fund for State Key Laboratories,and the NUIST-UoR International Research Institute。
文摘We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the precision of the model,we considered the data gap between the ground and satellite data.We compared and analyzed the results of the Taylor polynomial,surface Spline,and CHAOS-6(the CHAMP,?rsted and SAC-C model of Earth’s magnetic field)gradient models.Results showed that the gradients in the south-north and east-west directions of the four models were consistent.The 3DSS model was able to express not only gradients at different altitudes,but also average gradients inside the research area.The two Spline models were able to capture more information on gradient anomalies than were the fitted models.Strong local anomalies were observed in northern Xinjiang,Beijing,and the junction area between Jiangsu and Zhejiang,and the total intensity F decreased whereas the altitude increased.The gradient decreased by 21.69%in the south-north direction and increased by 11.78%in the east-west direction.In addition,the altitude gradient turned from negative to positive while the altitude increased.The Spline model and the two fitted models differed mainly in the field sources they expressed and the modeling theory.
文摘Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative execution.Methods Thirty-one patients scheduled for RAPN by four experienced urologists were enrolled in a prospective study.Prior to surgery,urologists reviewed the IRIS™three-dimensional model on an iphone Operating System(iOS)app and completed a questionnaire outlining their surgical plan including surgical approach,and ischemia technique as well as confidence in executing this plan.Postoperatively,questionnaires assessing the procedural approach,clinical utility,efficiency,and effectiveness of IRIS™were completed.The degree of overlap between the preoperative and intraoperative questionnaires and between the planned approach and actual execution of the procedure was analyzed.Questionnaires were answered on a 5-point Likert scale and scores of 4 or greater were considered positive.Results Mean age was 65.1 years with a mean tumor size of 27.7 mm(interquartile range 17.5-44.0 mm).Hilar tumors consisted of 32.3%;48.4%of patients had R.E.N.A.L.nephrometry scores of 7-9.On preoperative questionnaires,the surgeons reported that in 67.7%cases they were confident that they can perform the procedure successfully,and on intraoperative questionnaires,the surgeons reported that in 96.8%cases IRIS™helped achieve good spatial sensation of the anatomy.There was a high degree of overlap between preoperative and intraoperative questionnaires for the surgical approach,interpreting anatomical details and clinical utility.When comparing plans for selective or off-clamp,the preoperative plan was executed in 90.0%of cases intraoperatively.Conclusion A high degree of overlap between the preoperative surgical approach and intraoperative RAPN execution was found using IRIS™.This is the first study to evaluate the predictive accuracy of IRIS™during RAPN by comparing preoperative plan and intraoperative execution.
基金supported by the National Natural Science Foundation of China under Grant[52077027]Liaoning Province Science and Technology Major Project[No.2020JH1/10100020].
文摘In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.
基金Project(60672042) supported by the National Natural Science Foundation of China
文摘A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.
基金Projects(41674080,41674079)supported by the National Natural Science Foundation of China
文摘A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.
基金sponsored by the National Major Project(No.2016ZX05014-001)the National Natural Science Foundation of China(No.41172130 and U1403191)the Fundamental Research Funds for the Central Universities(No.2-9-2015-209)
文摘Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward modeling of point and line sources was conducted by using the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method. Then, the damping least square method was used in the 3D inversion of the formation resistivity data. Several geological models were considered in the forward modeling and inversion. The forward modeling results suggest that the potentials generated by the two sources have different surface signatures. The inversion data suggest that the low- resistivity anomaly is outlined better than the high-resistivity anomaly. Moreover, when the point source is under the anomaly, the resistivity anomaly boundaries are better outlined than when using a line source.
基金partially supported by the National Natural Science Foundation of China (Nos. 41864004 and 41674077)Jiangxi Provincial Academic Leaders (Youth) Training Program (No. 20204BCJL23058)Open Fund from Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster Detection of Jiangxi Province (SDGD202102)。
文摘The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surface-borehole observation device for leakage electric fi eld detection to achieve rapid measurement of the electric fi eld distribution characteristics at ground level in the foundation pit,thus enabling rapid localization of leakage points.We first establish the mechanism and basic equation of the leakage electric field response by combining the electric field formed by electrokinetic effect(EK)and the stable electric fi eld formed by conduction current in a combined leakage channel.Then,the fi nite–infi nite element coupling method is used to solve the electric fi eld equation to simulate the responses of a three-dimensional foundation pit leakage model.Furthermore,we conduct numerical simulations of diff erent pit models to investigate the infl uencing factors of the detection device and response characteristics of the change in the properties of the leakage channel.The results demonstrate that the proposed joint surface-borehole observation device can effi ciently reveal anomalous potential caused by leakage,and the amplitude of the electric fi eld generated by EK can eff ectively strengthen the leakage electric fi eld signal at the leakage,thus improving detection accuracy and effi ciency.
基金Postdoctoral Fund of China (No. 2003034518), Fund of Health Bureau of Zhejiang Province (No. 2004B042), China
文摘This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
文摘BACKGROUND Three-dimensional(3D)modelling technology translates the patient-specific anatomical information derived from two-dimensional radiological images into virtual or physical 3D models,which more closely resemble the complex environment encountered during surgery.It has been successfully applied to surgical planning and navigation,as well as surgical training and patient education in several surgical specialties,but its uptake lags behind in colorectal surgery.Rectal cancer surgery poses specific challenges due to the complex anatomy of the pelvis,which is difficult to comprehend and visualise.AIM To review the current and emerging applications of the 3D models,both virtual and physical,in rectal cancer surgery。METHODS Medline/PubMed,Embase and Scopus databases were searched using the keywords“rectal surgery”,“colorectal surgery”,“three-dimensional”,“3D”,“modelling”,“3D printing”,“surgical planning”,“surgical navigation”,“surgical education”,“patient education”to identify the eligible full-text studies published in English between 2001 and 2020.Reference list from each article was manually reviewed to identify additional relevant papers.The conference abstracts,animal and cadaveric studies and studies describing 3D pelvimetry or radiotherapy planning were excluded.Data were extracted from the retrieved manuscripts and summarised in a descriptive way.The manuscript was prepared and revised in accordance with PRISMA 2009 checklist.RESULTS Sixteen studies,including 9 feasibility studies,were included in the systematic review.The studies were classified into four categories:feasibility of the use of 3D modelling technology in rectal cancer surgery,preoperative planning and intraoperative navigation,surgical education and surgical device design.Thirteen studies used virtual models,one 3D printed model and 2 both types of models.The construction of virtual and physical models depicting the normal pelvic anatomy and rectal cancer,was shown to be feasible.Within the clinical context,3D models were used to identify vascular anomalies,for surgical planning and navigation in lateral pelvic wall lymph node dissection and in management of recurrent rectal cancer.Both physical and virtual 3D models were found to be valuable in surgical education,with a preference for 3D printed models.The main limitations of the current technology identified in the studies were related to the restrictions of the segmentation process and the lack of 3D printing materials that could mimic the soft and deformable tissues.CONCLUSION 3D modelling technology has potential to be utilised in multiple aspects of rectal cancer surgery,however,it is still at the experimental stage of application in this setting.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos..42030806,41774125,41804098,41904104)the Key National Research Project of China(Grant No.2018YFC0603300).
文摘In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteristics of SBTEM responses for complex geoelectrical models.To solve the double-curl diff usion equation for the electric fi eld,we use an unstructured tetrahedral mesh to discretize the model domain and select the unconditionally stable backward Euler scheme to discretize the time derivative.In our numerical experiments,we use a grounded wire as a transmitting source.After validating the algorithm’s eff ectiveness,we first analyze the diffusion characteristics and detectability of the electromagnetic field.After that,we focus our attention on the distribution and the cause of zero bands for Ex and dBy/dt components with the hope of guiding future field surveys.Finally,by simulating diff erent models,we analyze the capability of the SBTEM method in detecting typical mineral veins so that we can provide a reference for mineral resource exploration in the deep earth.
文摘The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.It is hard to reflect the spatial structure and characteristics of Horne orebody directly.In this paper,GIS was used to digitize the mining plan-view maps at different depths,stope maps,the boundary of the massive sulfide in drilling trajectories as well as the grade data of Au and Cu of Horne deposit.Meanwhile,the authors established the grade attribute database.Subsequently the three-dimensional(3D)geological model and grade attribute model of Horne orebody were established by Geological Object Computer Aided Design(GOCAD).Positions of two vents and directions of hydrothermal alteration in Horne deposit were inferred based on the property of the major fault,characteristics of hydrothermal alteration,the enrichment morphology and spatial distribution of high-grade Cu in the Cu attribute model.
基金supported by the National Natural Science Foundation of China(No.41474110)Shell Ph.D. Scholarship to support excellence in geophysical research
文摘Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.
基金supported by the National Natural Science Foundation of China(Grant No.51974173)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QD122).
文摘The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.
文摘This paper presents a hybrid model for three-dimensional Geographical Information Systems which is an integration of surface- and volume-based models. The Triangulated Irregular Network (TIN) and octree models are integrated in this hybrid models. The TIN model works as a surface-based model which mainly serves for surface presentation and visualization. On the other hand, the octree encoding supports volumetric analysis. The designed data structure brings a major advantage in the three-dimensional selective retrieval. This technique increases the efficiency of three-dimensional data operation.