期刊文献+
共找到153,697篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental investigation of methane explosion fracturing in bedding shales:Load characteristics and three-dimensional fracture propagation
1
作者 Yu Wang Cheng Zhai +5 位作者 Ting Liu Jizhao Xu Wei Tang Yangfeng Zheng Xinyu Zhu Ning Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS 2024年第10期1365-1383,共19页
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl... Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology. 展开更多
关键词 Methane in-situ explosion fracturing Bedding shale fracture propagation three-dimensional reconstruction Crack-generated fines Fractal dimension
下载PDF
Research on Quantitative Identification of Three-Dimensional Connectivity of Fractured-Vuggy Reservoirs
2
作者 Xingliang Deng Peng Cao +3 位作者 Yintao Zhang Yuhui Zhou Xiao Luo Liang Wang 《Energy Engineering》 EI 2024年第5期1195-1207,共13页
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ... The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy. 展开更多
关键词 fractured-vuggy reservoir three-dimensional connectivity connection unit dynamic prediction automatic history matching
下载PDF
Pulp health and calcific healing of a complicated crown–root fracture with additional root fracture in a maxillary incisor: A case report
3
作者 Na Li Yue-Yue Ren +4 位作者 Ying Tang Qi Yang Tian-Tian Meng Song Li Jing Zhang 《World Journal of Clinical Cases》 SCIE 2025年第3期42-49,共8页
BACKGROUND Complicated crown–root fracture (CRF) involves severe injury to the crown, root,and pulp, and may be accompanied by multiple root fractures. The loss of a toothhas lifelong consequences for children and te... BACKGROUND Complicated crown–root fracture (CRF) involves severe injury to the crown, root,and pulp, and may be accompanied by multiple root fractures. The loss of a toothhas lifelong consequences for children and teenagers, but the maintenance of pulphealth and the calcific healing of multiple root fractures are rarely reported in theliterature.CASE SUMMARY This case reports healing of a permanent tooth with complicated crown–root andadditional root fractures, in which pulp health was maintained. A 10-year-old girlfell and fractured the root of her maxillary left central incisor at the cervical level.After the coronal fragment was repositioned, the tooth was splinted until thetooth was no longer mobile, 2 years later. Eight years after treatment, the toothhas remained asymptomatic with vital pulp and localized gingival overgrowth.Cone-beam computed tomography revealed not only calcified healing of the CRFbut also spontaneous healing in an additional undiagnosed root fracture. Thefracture line on the enamel could not be healed by hard tissue and formed agroove in the cervical crown. It was speculated that the groove was related to thelocalized gingival overgrowth.CONCLUSION This case provides a clinical perspective of the treatment of a tooth with acomplicated CRF and an additional root fracture. 展开更多
关键词 Complicated crown-root fracture Multiple root fracture Spontaneous healing Cone-beam computed tomography Long-term follow-up Case report
下载PDF
Three-dimensional(3D) Printing Technology Assisted by Minimally Invasive Surgery for Pubic Rami Fractures 被引量:8
4
作者 Wen-bo NIE Fa-gang YE +4 位作者 Jian-lin MA Jiang-ping YU Ming-xing WANG Zhen-hua ZHANG Fu-jie SUN 《Current Medical Science》 SCIE CAS 2018年第5期827-833,共7页
The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who... The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who underwent surgical stabilization of their anterior pelvic ring (all utilizing the 3D printing technology)by one surgeon at a single hospital were studied.The minimally invasive incisions were made through anterior inferior cilia spine and pubic nodule.Data collected included the operative duration,the blood loss,the damage of the important tissue,the biographic union and therecovery of the function after the operation.Measurements on inlet and outlet pelvic cardiograph were made immediately post-operation and at all follow-up clinic visits.The scores of reduction and function were measured during follow-up.Results showed that the wounds of 30 patients were healed in the first stage,and there was no injury of important structures such as blood vessels and nerves.According to the Matta criteria,excellent effectiveness was obtained in 22 cases and good in 8 cases.According to the functional evaluation criteria of Majeed,excellent effectiveness was obtained in 21 cases and good in 9 cases.It was suggested that the 3D printing technology assisted by minimally invasive surgery can better evaluate the pelvic fracture before operation,which was helpful in plate modeling, and can shorten surgery duration and reduce intraoperative blood loss and complications. The positioning accuracy was improved,and better surgical result was finally achieved. 展开更多
关键词 digital design three-dimensional printing ANTERIOR ring PELVIC fractureS MINIMALLY INVASIVE surgery
下载PDF
Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing 被引量:7
5
作者 Haijun Wang Hanzhang Li +3 位作者 Lei Tang Xuhua Ren Qingxiang Meng Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期757-769,共13页
Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ... Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF. 展开更多
关键词 three-dimensional internal laser-engraved crack(3D-ILC) Interaction of cracks Ultrasonic fatigue Penny-shaped crack fracture mechanics High-cycle fatigue
下载PDF
Micromechanical modeling of asphalt concrete fracture using a user-defined three-dimensional discrete element method 被引量:4
6
作者 陈俊 汪林兵 黄晓明 《Journal of Central South University》 SCIE EI CAS 2012年第12期3595-3602,共8页
A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "F... A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength. 展开更多
关键词 asphalt concrete fracture behavior MICROMECHANICS discrete element method three-dimensional simulation
下载PDF
A three-dimensional solution of hydraulic fracture width for wellbore strengthening applications 被引量:2
7
作者 Jincai Zhang Shangxian Yin 《Petroleum Science》 SCIE CAS CSCD 2019年第4期808-815,共8页
Determining the width of an induced hydraulic fracture is the first step for applying wellbore strengthening and hydraulic fracturing techniques. However, current 2-D analytical solutions obtained from the plane strai... Determining the width of an induced hydraulic fracture is the first step for applying wellbore strengthening and hydraulic fracturing techniques. However, current 2-D analytical solutions obtained from the plane strain assumption may have large uncertainties when the fracture height is small. To solve this problem, a 3-D finite element method(FEM) is used to model wellbore strengthening and calculate the fracture width. Comparisons show that the 2-D plane strain solution is the asymptote of the 3-D FEM solution. Therefore, the 2-D solution may overestimate the fracture width. This indicates that the2-D solution may not be applicable in 3-D conditions. Based on the FEM modeling, a new 3-D semi-analytical solution for determining the fracture width is proposed, which accounts for the e ects of 3-D fracture dimensions, stress anisotropy and borehole inclination. Compared to the 2-D solution, this new 3-D semi-analytical solution predicts a smaller fracture width.This implies that the 2-D-based old design for wellbore strengthening may overestimate the fracture width, which can be reduced using the proposed 3-D solution. It also allows an easy way to calculate the fracture width in complex geometrical and geological conditions. This solution has been verified against 3-D finite element calculations for field applications. 展开更多
关键词 HYDRAULIC fracture fracture WIDTH Wellbore strengthening fracture PROPAGATION 3-D modeling
下载PDF
Three-dimensional computed tomography mapping of posterior malleolar fractures 被引量:2
8
作者 Qi-Hang Su Juan Liu +5 位作者 Yan Zhang Jun Tan Mei-Jun Yan Kai Zhu Jin Zhang Cong Li 《World Journal of Clinical Cases》 SCIE 2020年第1期29-37,共9页
BACKGROUND Posterior malleolar fractures have been reported to occur in<40%of ankle fractures.AIM To reveal the recurrent patterns and characteristics of posterior malleolar fractures by creating fracture maps of t... BACKGROUND Posterior malleolar fractures have been reported to occur in<40%of ankle fractures.AIM To reveal the recurrent patterns and characteristics of posterior malleolar fractures by creating fracture maps of the posterior malleolar fractures through the use of computed tomography mapping.METHODS A consecutive series of posterior malleolar fractures was used to create threedimensional reconstruction images,which were oriented and superimposed to fit an ankle model template by both aligning specific biolandmarks and reducing reconstructed fracture fragments.Fracture lines were found and traced in order to generate an ankle fracture map.RESULTS This study involved 112 patients with a mean age of 49,comprising 32 pronationexternal rotation grade IV fractures and 80 supination-external rotation grade IV fractures according to the Lauge-Hansen classification system.Three-dimensional maps showed that the posterior ankle fracture fragments in the supinationexternal rotation grade IV group were relatively smaller than those in the pronation-external rotation grade IV group after posterior malleolus fracture.In addition,the distribution analyses on posterior malleolus fracture lines indicated that the supination-external rotation grade IV group tended to have higher linear density but more concentrated and orderly distribution fractures compared to the pronation-external rotation grade IV group.CONCLUSION Fracture maps revealed the fracture characteristics and recurrent patterns of posterior malleolar fractures,which might help to improve the understanding of ankle fracture as well as increase opportunities for follow-up research and aid clinical decision-making. 展开更多
关键词 three-dimensional imaging MAPS Ankle fractures Computed tomography
下载PDF
Three-dimensional photoelasticity analysis of Nitinol Patellar Concentrator for treating patellar fractures 被引量:2
9
作者 许硕贵 张春才 +5 位作者 王家林 苏佳灿 曾伟明 顾绍德 张林春 方如华 《Journal of Medical Colleges of PLA(China)》 CAS 2000年第2期115-117,共3页
Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded wi... Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded with Nitinol Patellar Connector and frozen. After dividing layer, photographing and tracing, iterative method was used to calculate the stress value of every tuteed node. Rasults: Stress values of 1 262 nodes scattered in 12 layers were obtained The stress distribution indicated that an overall stress field was yield when the NT-PC fixated the patellar model, and there existed fixative stress in the facies articularis and distal pole of the patellar model. Conclusion: The NT-PC has evident therapeutic effect for the comminuted patellar fractures. The existing stress is helpful in maintaining anatomical reduction and enhancing fracture healing. 展开更多
关键词 Nitinol PATELLAR CONCENTRATOR three-dimensional PHOTOELASTICITY stress PATELLAR fracture
下载PDF
Bone three-dimensional microstructural features of the common osteoporotic fracture sites 被引量:13
10
作者 Huayue Chen Kin-ya Kubo 《World Journal of Orthopedics》 2014年第4期486-495,共10页
Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fracture... Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fractures are of global health and socioeconomic importance. The three-dimensional microstructural information of the common osteoporosis-related fracture sites, including vertebra, femoral neck and distal radius, is a key for fully understanding osteoporosis pathogenesis and predicting the fracture risk. Low vertebral bone mineral density(BMD) is correlated with increased fracture of the spine. Vertebral BMD decreases from cervical to lumbar spine, with the lowest BMD at the third lumbar vertebra. Trabecular bone mass of the vertebrae is much lower than that of the peripheral bone. Cancellous bone of the vertebral body has a complex heterogeneous three-dimensional microstructure, with lower bone volume in the central and anterior superior regions. Trabecular bone quality is a key element to maintain the vertebral strength. The increased fragility of osteoporotic femoral neck is attributed to low cancellous bone volume and high compact porosity. Compared with age-matched controls, increased cortical porosity is observed at the femoral neck in osteoporoticfracture patients. Distal radius demonstrates spatial inhomogeneous characteristic in cortical microstructure. The medial region of the distal radius displays the highest cortical porosity compared with the lateral, anterior and posterior regions. Bone strength of the distal radius is mainly determined by cortical porosity, which deteriorates with advancing age. 展开更多
关键词 Osteoporosis fracture Microstructure TRABECULAR BONE Cortical BONE VERTEBRA FEMORAL neck DISTAL radius
下载PDF
Three-dimensional analysis of spreading and mixing of miscible compound in heterogeneous variable-aperture fracture 被引量:1
11
作者 Zhi Dou Zhi-fang Zhou Jin-guo Wang 《Water Science and Engineering》 EI CAS CSCD 2016年第4期293-299,共7页
As mass transport mechanisms,the spreading and mixing(dilution) processes of miscible contaminated compounds are fundamental to understanding reactive transport behaviors and transverse dispersion.In this study,the sp... As mass transport mechanisms,the spreading and mixing(dilution) processes of miscible contaminated compounds are fundamental to understanding reactive transport behaviors and transverse dispersion.In this study,the spreading and dilution processes of a miscible contaminated compound in a three-dimensional self-affine rough fracture were simulated with the coupled lattice Boltzmann method(LBM).Moment analysis and the Shannon entropy(dilution index) were employed to analyze the spreading and mixing processes,respectively.The corresponding results showed that the spreading process was anisotropic due to the heterogeneous aperture distribution.A compound was transported faster in a large aperture region than in a small aperture region due to the occurrence of preferential flow.Both the spreading and mixing processes were highly dependent on the fluid flow velocity and molecular diffusion.The calculated results of the dilution index showed that increasing the fluid flow velocity and molecular diffusion coefficient led to a higher increasing rate of the dilution index. 展开更多
关键词 MIXING SPREADING SOLUTE transport three-dimensional fracture SELF-AFFINITY Hurst exponent
下载PDF
Influence of fracture roughness on shear strength,slip stability and permeability:A mechanistic analysis by three-dimensional digital rock modeling 被引量:4
12
作者 Chaoyi Wang Derek Elsworth +1 位作者 Yi Fang Fengshou Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期720-731,共12页
Subsurface fluid injections can disturb the effective stress regime by elevating pore pressure and potentially reactivate faults and fractures.Laboratory studies indicate that fracture rheology and permeability in suc... Subsurface fluid injections can disturb the effective stress regime by elevating pore pressure and potentially reactivate faults and fractures.Laboratory studies indicate that fracture rheology and permeability in such reactivation events are linked to the roughness of the fracture surfaces.In this study,we construct numerical models using discrete element method(DEM)to explore the influence of fracture surface roughness on the shear strength,slip stability,and permeability evolution during such slip events.For each simulation,a pair of analog rock coupons(three-dimensional bonded quartz particle analogs)representing a mated fracture is sheared under a velocity-stepping scheme.The roughness of the fracture is defined in terms of asperity height and asperity wavelength.Results show that(1)Samples with larger asperity heights(rougher),when sheared,exhibit a higher peak strength which quickly devolves to a residual strength after reaching a threshold shear displacement;(2)These rougher samples also exhibit greater slip stability due to a high degree of asperity wear and resultant production of wear products;(3)Long-term suppression of permeability is observed with rougher fractures,possibly due to the removal of asperities and redistribution of wear products,which locally reduces porosity in the dilating fracture;and(4)Increasing shear-parallel asperity wavelength reduces magnitudes of stress drops after peak strength and enhances fracture permeability,while increasing shear-perpendicular asperity wavelength results in sequential stress drops and a delay in permeability enhancement.This study provides insights into understanding of the mechanisms of frictional and rheological evolution of rough fractures anticipated during reactivation events. 展开更多
关键词 fracture reactivation fracture permeability evolution fracture roughness Roughness anisotropy Slip stability
下载PDF
Surface characteristics analysis of fractures induced by supercritical CO_(2)and water through three-dimensional scanning and scanning electron micrography 被引量:7
13
作者 Hao Chen Yi Hu +4 位作者 Jiawei Liu Feng Liu Zheng Liu Yong Kang Xiaochuan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1047-1058,共12页
Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyze... Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance. 展开更多
关键词 Supercritical carbon dioxide(SC-CO_(2))fracturing Quantitative characterization of surface features Surface roughness and fractal dimension three-dimensional(3D)scanning Scanning electron micrograph(SEM)
下载PDF
Three-dimensional physical simulation and optimization of water injection of a multi-well fractured-vuggy unit 被引量:6
14
作者 Ji-Rui HOU Ze-Yu Zheng +4 位作者 Zhao-Jie Song Min LUO Hai-Bo Li Li Zhang Deng-Yu Yuan 《Petroleum Science》 SCIE CAS CSCD 2016年第2期259-271,共13页
With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing... With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing numerical simulation methods in representing fractured- vuggy carbonate reservoirs makes numerical simulation difficult to characterize the fluid flow in these reservoirs. In this paper, based on a geological example unit in the Tahe Oilfield, a three-dimensional physical model was designed and constructed to simulate fluid flow in a fractured-vuggy reservoir according to similarity criteria. The model was validated by simulating a bottom water drive reservoir, and then subsequent water injection modes were optimized. These were continuous (constant rate), intermittent, and pulsed injection of water. Experimental results reveal that due to the unbalanced formation pressure caused by pulsed water injection, the swept volume was expanded and consequently the highest oil recovery increment was achieved. Similar to continuous water injection, intermit- tent injection was influenced by factors including the connectivity of the fractured-vuggy reservoir, well depth, and the injection-production relationship, which led to a relative low oil recovery. This study may provide a constructive guide to field production and for the devel- opment of the commercial numerical models specialized for fractured-vuggy carbonate reservoirs. 展开更多
关键词 Multi-well fractured-vuggy unit three-dimensional physical model Similarity criteria Bottom water drive. Optimization of water injection mode
下载PDF
A combination of digital design and three-dimensional printing to assist treatment of thoracolumbar compression fractures using percutaneous kyphoplasty 被引量:2
15
作者 Hui Lu Daixiang Jiang +1 位作者 Qimei Wu Rong Liu 《Global Health Journal》 2021年第4期190-193,共4页
Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tur... Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved. 展开更多
关键词 Percutaneous kyphoplasty Thoracolumbar compression fracture Digital design three-dimensional(3D)printing
下载PDF
Three-dimensional double-rough-walled modeling of fluid flow through self-affine shear fractures 被引量:4
16
作者 Richeng Liu Ming He +2 位作者 Na Huang Yujing Jiang Liyuan Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期41-49,共9页
This study proposes a double-rough-walled fracture model to represent the natural geometries of rough fractures.The rough surface is generated using a modified successive random additions(SRA)algorithm and the apertur... This study proposes a double-rough-walled fracture model to represent the natural geometries of rough fractures.The rough surface is generated using a modified successive random additions(SRA)algorithm and the aperture distribution during shearing is calculated using a mechanistic model.The shear-flow simulations are performed by directly solving the Navier-Stokes(NS)equations.The results show that the double-rough-walled fracture model can improve the accuracy of fluid flow simulations by approximately 14.99%-19.77%,compared with the commonly used single-rough-walled fracture model.The ratio of flow rate to hydraulic gradient increases by one order of magnitude for fluids in a linear flow regime with increment of shear displacement from 2.2 mm to 2.6 mm.By solving the NS equations,the inertial effect is taken into account and the significant eddies are simulated and numerically visualized,which are not easy to be captured in conventional experiments.The anisotropy of fluid flow in the linear regime during shearing is robustly enhanced as the shearing advances;however,it is either increased or decreased for fluids in the nonlinear flow regime,depending on the geometry of shear-induced void spaces between the two rough walls of the fracture.The present study provides a method to represent the real geometry of fractures during shearing and to simulate fluid flow by directly solving the NS equations,which can be potentially utilized in many applications such as heat and mass transfer,contaminant transport,and coupled hydro-thermo-mechanical processes within rock fractures/fracture networks. 展开更多
关键词 Double-rough-walled fracture Navier-Stokes(NS)equations Anisotropy FRACTAL dimension
下载PDF
Numerical simulation of three-dimensional fracturing fracture propagation in radial wells
17
作者 WANG Tianyu GUO Zhaoquan +4 位作者 LI Gensheng MA Zhengchao YONG Yuning CHANG Xin TIAN Shouceng 《Petroleum Exploration and Development》 SCIE 2023年第3期699-711,共13页
A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fractu... A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fracture geometries of radial well fracturing are simulated,the induction effect of radial well on the fracture is quantitatively characterized,and the influences of azimuth,horizontal principle stress difference,and reservoir matrix permeability on the fracture geometries are revealed.The radial wells can induce the fractures to extend parallel to their axes when two radial wells in the same layer are fractured.When the radial wells are symmetrically distributed along the direction of the minimum horizontal principle stress with the azimuth greater than 15,the extrusion effect reduces the fracture length of radial wells.When the radial wells are symmetrically distributed along the direction of the maximum horizontal principal stress,the extrusion increases the fracture length of the radial wells.The fracture geometries are controlled by the rectification of radial borehole,the extrusion between radial wells in the same layer,and the deflection of the maximum horizontal principal stress.When the radial wells are distributed along the minimum horizontal principal stress symmetrically,the fracture length induced by the radial well decreases with the increase of azimuth;in contrast,when the radial wells are distributed along the maximum horizontal principal stress symmetrically,the fracture length induced by the radial well first decreases and then increases with the increase of azimuth.The fracture length induced by the radial well decreases with the increase of horizontal principal stress difference.The increase of rock matrix permeability and pore pressure of the matrix around radial wells makes the inducing effect of the radial well on fractures increase. 展开更多
关键词 radial well three-dimensional fracturing fracture propagation simulation finite element-meshless method fluid-solid coupling
下载PDF
Comparative study of various internal fixation methods for treating patellar fractures by three-dimensional photoelasticity 被引量:2
18
作者 许硕贵 苏佳灿 +4 位作者 张春才 曾伟明 顾绍德 张林春 方如华 《Journal of Medical Colleges of PLA(China)》 CAS 2003年第6期384-387,共4页
Objective: To compare the biomechanical basis of 3 different internal fixation methods: nitinol patellar concentrator (NT-PC), tension band and wire circle in treating patellar fractures. Methods: The epoxy resin thre... Objective: To compare the biomechanical basis of 3 different internal fixation methods: nitinol patellar concentrator (NT-PC), tension band and wire circle in treating patellar fractures. Methods: The epoxy resin three dimensional photoelasticity patellar models were made by precise moulding, and were fixated by nitinol patellar concentrator (NT-PC), tension band and wire circle respectively. The patellar models with frozen stress stripes were put into the polarized light field and the stress distributions were compared. As for the model fixated by NT-PC, by dividing layer, photographing and tracing, we used the iterative method to calculate the stress value of every internal node of the epoxy resin patellar model, and the character of stress was analyzed. Results: An overall stress field was yielded when the patellar model was fixated by NT-PC, and the stripes were more than that of tension band model and wire circle model, which have only few stress stripes in the fixated layers. Further analysis indicated that there were continuous fixated stresses in the facies articularis and distal pole of patella, and the character of stresses produced by NT-PC were mainly in longitudinal direction, then in transverse direction. The shearing stresses were small. Conclusion: The initiative and continuous memorial stress of NT-PC and its overall stress distribution character are the essence of NT-PC distinguished with tension band and wire circle in treating patellar fractures. The stress character produced by NT-PC is good for the stability of fracture site and prompts fracture healing. 展开更多
关键词 internal fixation patellar fracture PHOTOELASTICITY STRESS nitinol patellar concentrator
下载PDF
A generalized nonlinear three-dimensional failure criterion based on fracture mechanics 被引量:2
19
作者 Zhaofeng Wang Pengzhi Pan +1 位作者 Jianping Zuo Yaohui Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期630-640,共11页
Based on fracture mechanics theory and wing crack model,a three-dimensional strength criterion for hard rock was developed in detail in this paper.Although the basic expression is derived from initiation and propagati... Based on fracture mechanics theory and wing crack model,a three-dimensional strength criterion for hard rock was developed in detail in this paper.Although the basic expression is derived from initiation and propagation of a single crack,it can be extended to microcrack cluster so as to reflect the macroscopic failure characteristic.Besides,it can be derived as HoekeBrown criterion when the intermediate principal stress σ_(2) is equal to the minimum principal stress σ_(3)(Zuo et al.,2015).In addition,the opening direction of the microcrack cluster decreases with the increase of the intermediate principal stress coefficient,which could be described by an empirical function and verified by 10 kinds of hard rocks.Rock strength is influenced by the coupled effect of stress level and the opening direction of the microcrack clusters related to the stress level.As the effects of these two factors on the strength are opposite,the intermediate principal stress effect is induced. 展开更多
关键词 Intermediate principal stress effect Rock strength fracture mechanics True triaxial compression
下载PDF
Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture 被引量:4
20
作者 Duanying Wan Meng Wang +6 位作者 Zheming Zhu Fei Wang Lei Zhou Ruifeng Liu Weiting Gao Yun Shu Hu Xiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1097-1114,共18页
Three-dimensional rock fracture induced by blasting is a highly complex problem and has received considerable attention in geotechnical engineering.The material point method is firstly applied to treat this challengin... Three-dimensional rock fracture induced by blasting is a highly complex problem and has received considerable attention in geotechnical engineering.The material point method is firstly applied to treat this challenging task.Some inherent weaknesses can be overcome by coupling the generalized interpolation material point(GIMP)and the convected particle domain interpolation technique(CPDI).For the media in the borehole,unchanged GIMP-type particles are used to guarantee a homogenous blast pressure.CPDITetrahedron type particles are employed to avoid the fake numerical fracture near the borehole for the rock material.A blasting experiment using three-dimensional single-borehole rock was simulated to examine the applicability of the coupled model under realistic loading and boundary conditions.A good agreement was achieved between the simulation and experimental results.Moreover,the mechanism of three-dimensional rock fracture was analyzed.It was concluded that rock particle size and material parameters play an important role in rock damage.The reflected tensile waves cause severe damage in the lower part of the model.Rayleigh waves occur on the top face of the rock model to induce a hoop failure band. 展开更多
关键词 Material point method(MPM) Convected particle domain interpolation (CPDI) Generalized interpolation material point (GIMP) Rock fracture BLAST
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部