With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.I...The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.It is hard to reflect the spatial structure and characteristics of Horne orebody directly.In this paper,GIS was used to digitize the mining plan-view maps at different depths,stope maps,the boundary of the massive sulfide in drilling trajectories as well as the grade data of Au and Cu of Horne deposit.Meanwhile,the authors established the grade attribute database.Subsequently the three-dimensional(3D)geological model and grade attribute model of Horne orebody were established by Geological Object Computer Aided Design(GOCAD).Positions of two vents and directions of hydrothermal alteration in Horne deposit were inferred based on the property of the major fault,characteristics of hydrothermal alteration,the enrichment morphology and spatial distribution of high-grade Cu in the Cu attribute model.展开更多
With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dan...With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.展开更多
Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coa...Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of展开更多
Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D ...Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1) on basis of the concept of magmatic-hydrothermal Cu polymetallic mineraliza- tion and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data) was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2) on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3) combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW) method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%); (4) comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal processes among the ore bodies, alteration rock, metallo- genic stratum, intrusive rock, and the Tongshan Fault. This study provides important technical support and a scientific basis for assessment of the Tongshan Cu deposit and surrounding exploration and mineral resources.展开更多
To dynamically update the shape of orebody according to the knowledge of a structural geologist’s insight,an approach of orebody implicit modeling from raw drillhole data using the generalized radial basis function i...To dynamically update the shape of orebody according to the knowledge of a structural geologist’s insight,an approach of orebody implicit modeling from raw drillhole data using the generalized radial basis function interpolant was presented.A variety of constraint rules,including geology trend line,geology constraint line,geology trend surface,geology constraint surface and anisotropy,which can be converted into interpolation constraints,were developed to dynamically control the geology trends.Combined with the interactive tools of constraint rules,this method can avoid the shortcomings of the explicit modeling method based on the contour stitching,such as poor model quality,and is difficult to update dynamically,and simplify the modeling process of orebody.The results of numerical experiments show that the 3D ore body model can be reconstructed quickly,accurately and dynamically by the implicit modeling method.展开更多
An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then agg...An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then aggregated by the logarithmic linear pooling to determine the 3 D multi-point pattern probabilities at the unknown points,to realize the reconstruction of a 3 D model from 2D cross-section.To solve the problems of reducing pattern variability in the 2 D training image and increasing sampling uncertainty,an adaptive spatial sampling method is introduced,and an iterative simulation strategy is adopted,in which sample points from the region with higher reliability of the previous simulation results are extracted to be additional condition points in the following simulation to improve the pattern probability sampling stability.The comparison of lateral accretion layer conceptual models shows that the reconstructing algorithm using self-adaptive spatial sampling can improve the accuracy of pattern sampling and rationality of spatial structure characteristics,and accurately reflect the morphology and distribution pattern of the lateral accretion layer.Application of the method in reconstructing the meandering river reservoir of the Cretaceous McMurray Formation in Canada shows that the new method can accurately reproduce the shape,spatial distribution pattern and development features of complex lateral accretion layers in the meandering river reservoir under tide effect.The test by sparse wells shows that the simulation accuracy is above 85%,and the coincidence rate of interpretation and prediction results of newly drilled horizontal wells is up to 80%.展开更多
This paper proposes a methodology for an alternative history matching process enhanced by the incorporation of a simplified binary interpretation of reservoir saturation logs(RST) as objective function. Incorporating ...This paper proposes a methodology for an alternative history matching process enhanced by the incorporation of a simplified binary interpretation of reservoir saturation logs(RST) as objective function. Incorporating fluids saturation logs during the history matching phase unlocks the possibility to adjust or select models that better represent the near wellbore waterfront movement, which is particularly important for uncertainty mitigation during future well interference assessments in water driven reservoirs. For the purposes of this study, a semi-synthetic open-source reservoir model was used as base case to evaluate the proposed methodology. The reservoir model represents a water driven, highly heterogenous sandstone reservoir from Namorado field in Brazil. To effectively compare the proposed methodology against the conventional methods, a commercial reservoir simulator was used in combination with a state-of-the-art benchmarking workflow based on the Big LoopTMapproach. A well-known group of binary metrics were evaluated to be used as the objective function, and the Matthew correlation coefficient(MCC) has been proved to offer the best results when using binary data from water saturation logs. History matching results obtained with the proposed methodology allowed the selection of a more reliable group of reservoir models,especially for cases with high heterogeneity. The methodology also offers additional information and understanding of sweep behaviour behind the well casing at specific production zones, thus revealing full model potential to define new wells and reservoir development opportunities.展开更多
Geological body structure is the product of the geological evolution in the time dimension, which is presented in 3D configuration in the natural world. However, many geologists still record and process their geologic...Geological body structure is the product of the geological evolution in the time dimension, which is presented in 3D configuration in the natural world. However, many geologists still record and process their geological data using the 2D or 1D pattern, which results in the loss of a large quantity of spatial data. One of the reasons is that the current methods have limitations on how to express underground geological objects. To analyze and interpret geological models, we present a layer data model to organize different kinds of geological datasets. The data model implemented the unification expression and storage of geological data and geometric models. In addition, it is a method for visualizing large-scaled geological datasets through building multi-resolution geological models rapidly, which can meet the demand of the operation, analysis, and interpretation of 3D geological objects. It proves that our methodology is competent for 3D modeling and self-adaptive visualization of large geological objects and it is a good way to solve the problem of integration and share of geological spatial data.展开更多
Taking hundreds of pieces of hazardous geological maps (1 : 10 000) of Three Gorges res-ervoir area (3GR) as background, we establish regional three-dimensional (3D) geo-hazard modelusing DEM (digital elevatio...Taking hundreds of pieces of hazardous geological maps (1 : 10 000) of Three Gorges res-ervoir area (3GR) as background, we establish regional three-dimensional (3D) geo-hazard modelusing DEM (digital elevation model) superposed surface images and geo-hazards elements. Based on landslides and other geo-hazard survey data,using improved B-REP(boundary representa-tion)entity data structure (two-body 3D data structure), we set up 3D solid models for each hazardous bodies in each hazardous geological maps. Then we integrate the two types of 3D models with different scales from area to point, which are the regional geo-hazard 3D model and the solid models of each disaster body, in order to provide a visual processing and analysis plat-form for danger partition, stability evaluation, disaster prevention and control, early warning and command.展开更多
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
文摘The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.It is hard to reflect the spatial structure and characteristics of Horne orebody directly.In this paper,GIS was used to digitize the mining plan-view maps at different depths,stope maps,the boundary of the massive sulfide in drilling trajectories as well as the grade data of Au and Cu of Horne deposit.Meanwhile,the authors established the grade attribute database.Subsequently the three-dimensional(3D)geological model and grade attribute model of Horne orebody were established by Geological Object Computer Aided Design(GOCAD).Positions of two vents and directions of hydrothermal alteration in Horne deposit were inferred based on the property of the major fault,characteristics of hydrothermal alteration,the enrichment morphology and spatial distribution of high-grade Cu in the Cu attribute model.
基金supported by the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2023YFS0380, 2023YFS0377, 2019YFG0460, 2022YFS0539)。
文摘With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.
文摘Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of
基金supported by the National Basic Research Program of China(Grant No.1212010881001 )the National Scicnce of the 12th "Five-Year Technology Support Program"(Grant No.2010BAE00281-6)+1 种基金the National Natural Science Foundation of China(Grant Nos.40772157,40972232, 41072070)the State Key Laboratory of Geological Processes and Mineral Resources(Grant Nos.GPMR0941,200624)
文摘Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1) on basis of the concept of magmatic-hydrothermal Cu polymetallic mineraliza- tion and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data) was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2) on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3) combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW) method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%); (4) comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal processes among the ore bodies, alteration rock, metallo- genic stratum, intrusive rock, and the Tongshan Fault. This study provides important technical support and a scientific basis for assessment of the Tongshan Cu deposit and surrounding exploration and mineral resources.
文摘To dynamically update the shape of orebody according to the knowledge of a structural geologist’s insight,an approach of orebody implicit modeling from raw drillhole data using the generalized radial basis function interpolant was presented.A variety of constraint rules,including geology trend line,geology constraint line,geology trend surface,geology constraint surface and anisotropy,which can be converted into interpolation constraints,were developed to dynamically control the geology trends.Combined with the interactive tools of constraint rules,this method can avoid the shortcomings of the explicit modeling method based on the contour stitching,such as poor model quality,and is difficult to update dynamically,and simplify the modeling process of orebody.The results of numerical experiments show that the 3D ore body model can be reconstructed quickly,accurately and dynamically by the implicit modeling method.
基金Supported by the China National Science and Technology Major Project(2017ZX05005-004-002,2016ZX05031-002-001)National Natural Science Foundation of China(41872138)Open Foundation of Top Disciplines in Yangtze University(2019KFJJ0818029)。
文摘An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then aggregated by the logarithmic linear pooling to determine the 3 D multi-point pattern probabilities at the unknown points,to realize the reconstruction of a 3 D model from 2D cross-section.To solve the problems of reducing pattern variability in the 2 D training image and increasing sampling uncertainty,an adaptive spatial sampling method is introduced,and an iterative simulation strategy is adopted,in which sample points from the region with higher reliability of the previous simulation results are extracted to be additional condition points in the following simulation to improve the pattern probability sampling stability.The comparison of lateral accretion layer conceptual models shows that the reconstructing algorithm using self-adaptive spatial sampling can improve the accuracy of pattern sampling and rationality of spatial structure characteristics,and accurately reflect the morphology and distribution pattern of the lateral accretion layer.Application of the method in reconstructing the meandering river reservoir of the Cretaceous McMurray Formation in Canada shows that the new method can accurately reproduce the shape,spatial distribution pattern and development features of complex lateral accretion layers in the meandering river reservoir under tide effect.The test by sparse wells shows that the simulation accuracy is above 85%,and the coincidence rate of interpretation and prediction results of newly drilled horizontal wells is up to 80%.
文摘This paper proposes a methodology for an alternative history matching process enhanced by the incorporation of a simplified binary interpretation of reservoir saturation logs(RST) as objective function. Incorporating fluids saturation logs during the history matching phase unlocks the possibility to adjust or select models that better represent the near wellbore waterfront movement, which is particularly important for uncertainty mitigation during future well interference assessments in water driven reservoirs. For the purposes of this study, a semi-synthetic open-source reservoir model was used as base case to evaluate the proposed methodology. The reservoir model represents a water driven, highly heterogenous sandstone reservoir from Namorado field in Brazil. To effectively compare the proposed methodology against the conventional methods, a commercial reservoir simulator was used in combination with a state-of-the-art benchmarking workflow based on the Big LoopTMapproach. A well-known group of binary metrics were evaluated to be used as the objective function, and the Matthew correlation coefficient(MCC) has been proved to offer the best results when using binary data from water saturation logs. History matching results obtained with the proposed methodology allowed the selection of a more reliable group of reservoir models,especially for cases with high heterogeneity. The methodology also offers additional information and understanding of sweep behaviour behind the well casing at specific production zones, thus revealing full model potential to define new wells and reservoir development opportunities.
基金Supported by National High Technology Research and Development Program of China (Grant Nos. 2006AA12Z220, 2006AA12Z114, 2007AA12Z226)Open Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (Grant No. WKL(06)0304)
文摘Geological body structure is the product of the geological evolution in the time dimension, which is presented in 3D configuration in the natural world. However, many geologists still record and process their geological data using the 2D or 1D pattern, which results in the loss of a large quantity of spatial data. One of the reasons is that the current methods have limitations on how to express underground geological objects. To analyze and interpret geological models, we present a layer data model to organize different kinds of geological datasets. The data model implemented the unification expression and storage of geological data and geometric models. In addition, it is a method for visualizing large-scaled geological datasets through building multi-resolution geological models rapidly, which can meet the demand of the operation, analysis, and interpretation of 3D geological objects. It proves that our methodology is competent for 3D modeling and self-adaptive visualization of large geological objects and it is a good way to solve the problem of integration and share of geological spatial data.
基金supported by the 3D Model Library of Geo-hazards in the 3GR (No. SXJC-3ZH1A7)the software development of 3D area disaster geology map in the 3GR (No. SXJC-3ZH1A6)+1 种基金survey data acquisition and geologic map CAD system in the 3GR (No. SXKY4-02)985 Platform Projects,3D modeling and space analysis system of geo-hazards and the National Natural Science Foundation of China (No. 41172300)
文摘Taking hundreds of pieces of hazardous geological maps (1 : 10 000) of Three Gorges res-ervoir area (3GR) as background, we establish regional three-dimensional (3D) geo-hazard modelusing DEM (digital elevation model) superposed surface images and geo-hazards elements. Based on landslides and other geo-hazard survey data,using improved B-REP(boundary representa-tion)entity data structure (two-body 3D data structure), we set up 3D solid models for each hazardous bodies in each hazardous geological maps. Then we integrate the two types of 3D models with different scales from area to point, which are the regional geo-hazard 3D model and the solid models of each disaster body, in order to provide a visual processing and analysis plat-form for danger partition, stability evaluation, disaster prevention and control, early warning and command.