In this work, three-dimensional graphene foams (GFs) are synthesized and characterized by scanning electron micro- scope (SEM) and Raman spectroscopy. The SEM images indicate that after the growth of graphene, the...In this work, three-dimensional graphene foams (GFs) are synthesized and characterized by scanning electron micro- scope (SEM) and Raman spectroscopy. The SEM images indicate that after the growth of graphene, the graphene covers the surface of nickel (Ni) foam uniformly. Raman spectra show that the percentages of monolayer, bilayer, trilayer, and multilayer graphenes are - 58%, - 32%, - 8%, and ,.o 2%, respectively. The contact angle (CA) (-- 12°) of water droplet (3 p-L) on GF is found to be larger than that on Ni foam (,- 107°), indicating that graphenes have changed the surface wettability of the Ni foam. Meanwhile, the dynamic characteristics of CA of water droplet on GF are different from those on Ni foam. The mechanisms for different behaviors are discussed, which are attributed to volatilization and seepage of water droplets.展开更多
The chemical composition obviously affects the surface wettability of a three-dimensional(3D)graphene material apart from its surface energy and microstructure.In the hydrothermal preparation,the heteroatom doping cha...The chemical composition obviously affects the surface wettability of a three-dimensional(3D)graphene material apart from its surface energy and microstructure.In the hydrothermal preparation,the heteroatom doping changes the chemical composition and wettability of the 3D graphene material.To realize the controllable surface wettability of graphene materials,aminobenzene sulfonic acid(ABSA)was selected as a typical doping agent for the preparation of nitrogen and sulfur co-doped 3D graphene foam(SNGF)using a hydrothermal method.Different from using o-ABSA or p-ABSA as the dopant,SNGF with tunable surface wettability is obtained only when m-ABSA is used.This result indicates that the substituent position of-SO3H group in the benzene ring of ABSA is rather important for the tunable wettability.This work provides some theo retical foundations for dopant selection and some new insights in manipulating the properties of 3D graphene foams by adjusting the configuration of dopants.展开更多
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
The recent development of synthesis processes to assemble graphene sheets into porous three-dimensional (3D)macroscopic structures are reviewed, including our efforts on 3D graphene structures. Mechanisms for buildi...The recent development of synthesis processes to assemble graphene sheets into porous three-dimensional (3D)macroscopic structures are reviewed, including our efforts on 3D graphene structures. Mechanisms for building 3D graphene architectures and their composite materials are also summarized. The functional systems based on 3D graphene architectures provide a significant enhancement in the efficacy due to their unique structures and properties.展开更多
Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional re...Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional reality will result in strong anisotropic thermal conductivity and wrinkles or even crumples that significantly sacrifices its inherent properties in practical applications.One strategy to overcome this is to use three-dimensional(3D)architecture of graphene.Herein,3D graphene structure with covalent-bonding nanofins(3D-GS-CBF)is proposed,which is then used as the filler to demonstrate effective aqueous medium.The thermal conductivity and thermal conductivity enhancement efficiency of 3D-GS-CBF(0.26 vol%)aqueous medium can be as high as 2.61 W m-1 K-1 and 1300%,respectively,around six times larger than highest value of the existed aqueous mediums.Meanwhile,3D-GS-CBF can be stable in the solution even after 6 months,addressing the instability issues of conventional graphene networks.A multiscale modeling including non-equilibrium molecular dynamics simulations and heat conduction model is applied to interpret experimental results.3D-GS-CBF aqueous medium can largely improve the solar vapor evaporation rate(by 1.5 times)that are even comparable to the interfacial heating system;meanwhile,its cooling performance is also superior to commercial coolant in thermal management applications.展开更多
To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel...To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel. PANI grows on the GN surface as a thin film, and its content in the composite is controlled by the concentration of the reaction monomer. The specific capacitance of the 3DGN/PANI composite containing 10 wt% PANI reaches 322.8 F.g-1 at a current density of 1 A.g-1, nearly twice as large as that of the pure 3DGN (162.8 F.g-1). The capacitance of the composite is 307.9 F.g-1 at 30 A.g-1 (maintaining 95.4%), and 89% retention after 500 cycles. This study demonstrates the exciting potential of 3DGN/PANI with high capacitance, excellent rate capability and long cycling life for supercapacitors.展开更多
A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity...A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these.The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional(2D)nonlocal plate problems,the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory(CST),although with different nonhomogeneous terms.Expanding the primary field variables of each order as the double Fourier series functions in the in-plane directions,we can obtain the Navier solutions of the leading-order problem,and the higher-order modifications can then be determined in a hierarchic and consistent manner.Some benchmark solutions for the static analysis of isotropic and orthotropic nanoplates and GSs subjected to sinusoidally and uniformly distributed loads are given to demonstrate the performance of the 3D nonlocal asymptotic theory.展开更多
The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced ...The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced with graphene oxide(GO) and reduced graphene oxide(RGO) to investigate this influence of functional groups. RGO sheets were fabricated by solvent thermal reduction in DMF medium. UV-Vis, FT-IR and XPS analyses indicate the difference of oxygen-containing groups on GO and RGO sheets surface. The observation of SEM illustrates that the addition of a smaller number of GO or RGO sheets causes a fine cellular structure of PMMA foams with a higher cell density(about 1011 cells/cm3) and smaller cell sizes(about 1-2 μm) owing to their remarkable heterogeneous nucleation effect. Compared to GO reinforced foams, the RGO/PMMA foams own lower cell density and bigger cell size in their microstructure, and their compressive strength is lower even when the reinforcement contents are the same and the foam bulk density is higher. These results indicate that the oxygen-containing groups on GO sheets’ surface are beneficial to adhere CO2 to realize a larger nucleation rate, and their strong interaction with PMMA matrix improves the mechanical property of PMMA foams.展开更多
The graphene coating was deposited on the surface of Ni foam using the chemical vapor deposition process. A large amount of flower-like ZnCoOmicrospheres with short nanowires were formed on bare Ni foam by hydrotherma...The graphene coating was deposited on the surface of Ni foam using the chemical vapor deposition process. A large amount of flower-like ZnCoOmicrospheres with short nanowires were formed on bare Ni foam by hydrothermal method, while large-scale ZnCoOnanowires arrays homogeneously aligned and separated adequately on Ni foam coated with graphene. This ZnCoOnanowire structure exhibited superior supercapacitors properties. The excellent supercapacitors were mainly attributed to the large specific surface and the porosity on the nanowires which promoted the electrons and ions transportation. In addition, graphene improved conductivity of substrate for current collecting.展开更多
The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leaka...The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leakageproofing method.In this study,a novel carbonized Cu-coated melamine foam(MF)/reduced graphene oxide(rGO)framework(MF/rGO/Cu-C)is constructed as a support for fabricating stabilized multifunctional OPCMs.MF serves as the supporting material,while rGO and Cu act as functional reinforcements.As a thermal energy storage material,polyethylene glycol(PEG)is encapsulated into MF/rGO/Cu-C through a vacuum-assisted impregnation method to obtain PEG@MF/rGO/Cu-C composite with excellent comprehensive performance.PEG@MF/rGO/Cu-C exhibits high phase change enthalpies of 148.3 J g^(-1)(melting)and 143.9 J g^(-1)(crystallization),corresponding to a high energy storage capability of 92.7%.Simultaneously,MF/rGO/Cu-C endues the composite with an enhanced thermal conductivity of 0.4621Wm^(-1) K^(-1),which increases by 463%compared to that of PEG@MF.Furthermore,PEG@MF/rGO/Cu-C displays great light-to-thermal and electric-to-thermal conversion capabilities,thermal cycle stability,light-tothermal cycle stability,and shape stability,showing promising application prospects in different aspects.展开更多
Graphene foam is becoming a material of choice for magnetoelectronic devices due to its large,linear and unsaturated room temperature magnetoresistance.However,the magnetoresistance of graphene foam is not as large as...Graphene foam is becoming a material of choice for magnetoelectronic devices due to its large,linear and unsaturated room temperature magnetoresistance.However,the magnetoresistance of graphene foam is not as large as that of monolayer graphene.Herein,we describe how magnetoresistance^100%was detected at room temperature under a magnetic field of 5 T that is comparable to the magnetoresistance in monolayer graphene;the highest magnetoresistance of^158%was detected at 5 K under a magnetic field of 5 T.Unlike monolayer graphene,graphene foam is far more comfortable with producing in gram scale and utilizing in magnetoelectronic devices.展开更多
Electrochemical properties of lithium-sulfur(Li-S)batteries are mainly hindered by both the insulating nature of elemental sulfur(i.e.,molecular S8)and the shuttling effect or sluggish redox kinetics of lithium polysu...Electrochemical properties of lithium-sulfur(Li-S)batteries are mainly hindered by both the insulating nature of elemental sulfur(i.e.,molecular S8)and the shuttling effect or sluggish redox kinetics of lithium polysulfide intermediates(Li_(2)S_(n),3≤n≤8).In this paper,a three-dimensional mesoporous reduced graphene oxide-based nanocomposite,with the embedding of metallic Co nanoparticles and the doping of elemental N(Co/NrGO),and its simply ground mixture with powdered S at a mass ratio of 1:6(Co/NrGO/S)are prepared and used as cathode-/separator-coated interlayers and working electrodes in assembled Li-S cells,respectively.One of the effective cell configurations is to paste composite Co/NrGO onto both the S-loading cathode and separator,showing good cycling stability(1070mAh g^(−1) in the 100th cycle at 0.2 C),highrate capability(835mAh g^(−1),2.0 C),and excellent durability(905mAh g^(−1) in the 250th cycle at 0.5 or 0.2 C).Compared with the experimental results of Co-absent NrGO,electrochemical properties of various Co/NrGO-based cell configurations clearly show multiple functions of Co/NrGO,indicating that the absence of Co/NrGO coatings and/or Co nanoparticles may be inadequate to achieve superior S availability of assembled Li-S batteries.展开更多
Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffu...Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffusion of polysulfide intermediate into the electrolyte still hamper their practical applications.And the reported preparation procedures to sulfur based cathode materials are often complex, and hence are rather difficult to produce at large scale. Here, we report a simple mechano-chemical sulfurization methodology in vacuum environment applying ball-milling method combined both the chemical and physical interaction for the one-pot synthesis of edge-sulfurized grapheme nanoplatelets with 3D porous foam structure as cathode materials. The optimal sample of 70%S–Gn Ps-48 h(ball-milled 48 h) obtains 13.2 wt% sulfur that chemically bonded onto the edge of Gn Ps. And the assembled batteries exhibit high initial discharge capacities of 1089 mAh/g at 0.1 C and 950 mAh/g at 0.5 C, and retain a stable discharge capacity of 776 mAh/g after 250 cycles at 0.5 C with a high Coulombic efficiency of over 98%. The excellent performance is mainly attributed to the mechano-chemical interaction between sulfur and grapheme nanoplatelets. This definitely triggers the currently extensive research in lithium–sulfur battery area.展开更多
2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. Howe...2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. However, the serious restacking and aggregation of the 2D nanosheets are still hampering their applications. To circumvent the issues of 2D nanosheets, one efficient strategy is to construct 3D structures with hierarchical porous structures, good chemical/mechanical stabilities and tunable electrical conductivities. In this review, we firstly focus on the available synthetic approaches of 3D structures from 2D nanosheets, and then summarize the relationships between the microstructures of 3D structures built from 2D nanosheets and their electrochemical behaviors for lithium storage. On the basis of above results, some challenges are briefly discussed in the perspective of the development of various functional 3D structures.展开更多
A three-dimensional graphene-based composite was prepared by a simple one-step in-site reduced-oxide method under atmospheric pressure. The obtained hydrogel was modified with 4-amino-benzenesulfonic acid and connecte...A three-dimensional graphene-based composite was prepared by a simple one-step in-site reduced-oxide method under atmospheric pressure. The obtained hydrogel was modified with 4-amino-benzenesulfonic acid and connected with ethylenediamine, and freeze-dried into an aerogel, which was characterized. Then the surface interaction with platinum (Pt, IV) was explored. The obtained aerogel showed good adsorption for Pt (IV) at acid conditions, giving a rising to the adsorption rate > 98% while pH ≥ 6. Using hexadecyl trimethyl ammonium bromide of 2% (m/V) as an eluent to desorb the Pt (IV) from the surface of the aerogel, a desorption rate of 81.1% was obtained in this process. Urea, buffer aquation and other surfactants were used in the desorption experiment to understand the adsorption mechanism between the aerogel and Pt (IV). In this work, hydrogen bond, van der Waals force and electronic interaction force mainly drove the adsorption process. For obtaining more purified Pt (IV), we used 0.5% CTAB to desorb Pd (II). A new three-dimensional graphene-based composite was prepared and the surface interaction between Pt (IV) and composite was experimented for understanding the adsorption mechanism and exploring its potential application in sample preparation in low concentration.展开更多
New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also du...New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment.Electro-Fenton technology is an effective method to remove PPCPs from water.Novel particle electrodes(MMT/rGO/Fe_(3)O_(4))were synthesized by depositing Fe3O4 nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional electro-Fenton(3D-EF)system.The electrodes combined the catalytic property of Fe3O4,hydrophilicity of montmorillonite and electrical conductivity of graphene oxides,and applied for the degradation of Acyclovir(ACV)with high efficiency and ease of operation.At optimal condition,the degradation rate of ACV reached 100%within 120 min,and the applicable pH range could be 3 to 11 in the 3D-EF system.The stability and reusability of MMT/rGO/Fe_(3)O_(4)particle electrodes were also studied,the removal rate of ACV remained at 92%after 10 cycles,which was just slightly lower than that of the first cycle.Potential degradation mechanisms were also proposed by methanol quenching tests and FT-ICR-MS.展开更多
A novel supercapacitor based on ultralight and elastic three-dimensional (3D) porous melamine foam (MF)-derived macroporous carbon (3DPMFDMC)/reduced graphene oxide (rGO)/polyaniline (PANI) nanocomposites (denoted as ...A novel supercapacitor based on ultralight and elastic three-dimensional (3D) porous melamine foam (MF)-derived macroporous carbon (3DPMFDMC)/reduced graphene oxide (rGO)/polyaniline (PANI) nanocomposites (denoted as 3DPMFDMC/rGO/PANI) were fabricated. By high temperature carboniza-tion, the commercial MF soaked in GO solution was prepared into ultralight and elastic 3DPMFDMC, the rGO were uniformly distributed into 3DPMFDMC to obtain 3DPMFDMC/rGO, and finally PANI was grown on the 3DPMFDMC/rGO by using in situ chemical oxidation polymerization method. The obtained 3DPMFDMC/rGO/PANI nanocomposites were characterized by SEM, FT-IR and Raman. The results showed the uniform distribution of rGO connected the broken fibers of 3DPMFDMC produced in the high temperature carbonization to improve the electrical conductivity and also enlarged the specific surface area of nanocomposites greatly. Lots of PANI were vertically arrayed on the surface of 3DPMFDMC/rGO. 3DPMFDMC/rGO/PANI exhibited a rapid electron/mass transport. Owing to its special structures and nanocomposites, the supercapacitor showed good electrical performance with a specific capacitance of 1870 F/g at the current density of 1 A/g. Moreover, the specific capacitance remained 95.4%after 1000 charging/discharging cycles at a current density of 5 A/g.展开更多
In this study, we have for the first time preformed the facile substrate-enhanced electroless deposition(SEED) of metal nanoparticles onto monolithic graphene@Ni foams for construction of disposable three-dimensional(...In this study, we have for the first time preformed the facile substrate-enhanced electroless deposition(SEED) of metal nanoparticles onto monolithic graphene@Ni foams for construction of disposable three-dimensional(3 D) electrochemical immunosensors. Specifically, we firstly used the SEED method to deposit gold nanoparticles(AuNPs) onto the graphene@Ni foam for immobilization of antibody(Ab1). This is followed by a second step SEED deposition to produce silver nanoparticles(AgNPs) for electrochemical stripping detection. Using a-fetoprotein antigen(AFP) as a module analyte, the newly-developed sensor showed a wide linear response, ranging from 5.0 pg/mL to 5.0 ng/mL and a low detection limit down to 2.3 pg/mL. The newly-developed 3 D-immunosensor is sensitive, reliable,and easy to be fabricated, showing great potential for clinic applications.展开更多
Polyurethane(PU)foams are widely used in thermal management materials due to their good flexibility.However,their low thermal conductivity limits the efficiency.To address this issue,we developed a new method to produ...Polyurethane(PU)foams are widely used in thermal management materials due to their good flexibility.However,their low thermal conductivity limits the efficiency.To address this issue,we developed a new method to produce tannic acid(TA)-modified graphene nanosheets(GTs)-encapsulated PU(PU@GT)foams using the soft template microstructure and a facile layer-by-layer(L-B-L)assembly method.The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional(3D)highly interconnected thermal networks.These networks are further infiltrated with polydimethylsiloxane(PDMS).The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m^(−1)·K^(−1) at a low filler loading of 7.9 wt.%,which is 1115%higher than that of the polymer matrix.Moreover,the mechanical property of the composite is~2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network.This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance,which implies a promising future in thermal management systems of electronic devices.展开更多
High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (k ⊥), bu...High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (k ⊥), but their excessively high content or intrinsic rigidness deteriorate TIMs softness, leading to worsening for thermal contact resistance (R contact). In this study, 2D graphene materials are fabricated into lightweight and soft graphene foams (GFs) with high-orientation, acting as vertical filler frameworks to optimize the k ⊥ and R contact for vertical GF (VGF) TIMs. The VGF-TIM has a high k ⊥ of 47.9 W·m^(−1)·K^(−1) at a low graphene content of 15.5 wt.%. Due to the softness and low filler contents of GFs, the VGF-TIM exhibits a low compressive module (4.2 MPa), demonstrating excellent compressibility. The resulting TIM exhibit a low contact resistance of 24.4 K·mm2·W^(−1), demonstrating 185.1% higher cooling efficiency in practical heat dissipating scenario compared to commercial advanced TIMs. This work provides guidelines for the design of advanced TIMs and their applications in thermal management.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774032 and 90921001)the Key Knowledge Innovation Project ofthe Chinese Academy of Sciences on Water Science Research,Instrument Developing Project of the Chinese Academy of Sciences(Grant No.Y2010031)
文摘In this work, three-dimensional graphene foams (GFs) are synthesized and characterized by scanning electron micro- scope (SEM) and Raman spectroscopy. The SEM images indicate that after the growth of graphene, the graphene covers the surface of nickel (Ni) foam uniformly. Raman spectra show that the percentages of monolayer, bilayer, trilayer, and multilayer graphenes are - 58%, - 32%, - 8%, and ,.o 2%, respectively. The contact angle (CA) (-- 12°) of water droplet (3 p-L) on GF is found to be larger than that on Ni foam (,- 107°), indicating that graphenes have changed the surface wettability of the Ni foam. Meanwhile, the dynamic characteristics of CA of water droplet on GF are different from those on Ni foam. The mechanisms for different behaviors are discussed, which are attributed to volatilization and seepage of water droplets.
基金the National Natural Science Foundation of China(No.21675133)。
文摘The chemical composition obviously affects the surface wettability of a three-dimensional(3D)graphene material apart from its surface energy and microstructure.In the hydrothermal preparation,the heteroatom doping changes the chemical composition and wettability of the 3D graphene material.To realize the controllable surface wettability of graphene materials,aminobenzene sulfonic acid(ABSA)was selected as a typical doping agent for the preparation of nitrogen and sulfur co-doped 3D graphene foam(SNGF)using a hydrothermal method.Different from using o-ABSA or p-ABSA as the dopant,SNGF with tunable surface wettability is obtained only when m-ABSA is used.This result indicates that the substituent position of-SO3H group in the benzene ring of ABSA is rather important for the tunable wettability.This work provides some theo retical foundations for dopant selection and some new insights in manipulating the properties of 3D graphene foams by adjusting the configuration of dopants.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11004230, 51172273, 11290161, and 11027402)the National Basic Research Program of China (Grant Nos. 2012CB933003 and 2013CB932603)the Chinese Academy of Sciences (Grant No. KJCX2-YW-W35)
文摘The recent development of synthesis processes to assemble graphene sheets into porous three-dimensional (3D)macroscopic structures are reviewed, including our efforts on 3D graphene structures. Mechanisms for building 3D graphene architectures and their composite materials are also summarized. The functional systems based on 3D graphene architectures provide a significant enhancement in the efficacy due to their unique structures and properties.
基金the financial support from National Natural Science Foundation of China(No.51906211)the China Postdoctoral Science Foundation(No.2019M662048)+1 种基金the Key R&D Program of Zhejiang Province(No.2019C01044)the Zhejiang Provincial Natural Science Foundation of China(No.LR17E060002)。
文摘Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional reality will result in strong anisotropic thermal conductivity and wrinkles or even crumples that significantly sacrifices its inherent properties in practical applications.One strategy to overcome this is to use three-dimensional(3D)architecture of graphene.Herein,3D graphene structure with covalent-bonding nanofins(3D-GS-CBF)is proposed,which is then used as the filler to demonstrate effective aqueous medium.The thermal conductivity and thermal conductivity enhancement efficiency of 3D-GS-CBF(0.26 vol%)aqueous medium can be as high as 2.61 W m-1 K-1 and 1300%,respectively,around six times larger than highest value of the existed aqueous mediums.Meanwhile,3D-GS-CBF can be stable in the solution even after 6 months,addressing the instability issues of conventional graphene networks.A multiscale modeling including non-equilibrium molecular dynamics simulations and heat conduction model is applied to interpret experimental results.3D-GS-CBF aqueous medium can largely improve the solar vapor evaporation rate(by 1.5 times)that are even comparable to the interfacial heating system;meanwhile,its cooling performance is also superior to commercial coolant in thermal management applications.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CB932700 and 2011CB932703)the National Natural Science Foundation of China(Grant Nos.61335006,61378073,and 61077044)+1 种基金the Beijing Natural Science Foundation,China(Grant No.4132031)the Fundamental Research Funds for the Central Universities of Beijing Jiaotong University,China(Grant No.2014YJS136)
文摘To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel. PANI grows on the GN surface as a thin film, and its content in the composite is controlled by the concentration of the reaction monomer. The specific capacitance of the 3DGN/PANI composite containing 10 wt% PANI reaches 322.8 F.g-1 at a current density of 1 A.g-1, nearly twice as large as that of the pure 3DGN (162.8 F.g-1). The capacitance of the composite is 307.9 F.g-1 at 30 A.g-1 (maintaining 95.4%), and 89% retention after 500 cycles. This study demonstrates the exciting potential of 3DGN/PANI with high capacitance, excellent rate capability and long cycling life for supercapacitors.
文摘A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these.The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional(2D)nonlocal plate problems,the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory(CST),although with different nonhomogeneous terms.Expanding the primary field variables of each order as the double Fourier series functions in the in-plane directions,we can obtain the Navier solutions of the leading-order problem,and the higher-order modifications can then be determined in a hierarchic and consistent manner.Some benchmark solutions for the static analysis of isotropic and orthotropic nanoplates and GSs subjected to sinusoidally and uniformly distributed loads are given to demonstrate the performance of the 3D nonlocal asymptotic theory.
基金Funded by the National Nature Science Foundation of China(No.51521001)
文摘The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced with graphene oxide(GO) and reduced graphene oxide(RGO) to investigate this influence of functional groups. RGO sheets were fabricated by solvent thermal reduction in DMF medium. UV-Vis, FT-IR and XPS analyses indicate the difference of oxygen-containing groups on GO and RGO sheets surface. The observation of SEM illustrates that the addition of a smaller number of GO or RGO sheets causes a fine cellular structure of PMMA foams with a higher cell density(about 1011 cells/cm3) and smaller cell sizes(about 1-2 μm) owing to their remarkable heterogeneous nucleation effect. Compared to GO reinforced foams, the RGO/PMMA foams own lower cell density and bigger cell size in their microstructure, and their compressive strength is lower even when the reinforcement contents are the same and the foam bulk density is higher. These results indicate that the oxygen-containing groups on GO sheets’ surface are beneficial to adhere CO2 to realize a larger nucleation rate, and their strong interaction with PMMA matrix improves the mechanical property of PMMA foams.
文摘The graphene coating was deposited on the surface of Ni foam using the chemical vapor deposition process. A large amount of flower-like ZnCoOmicrospheres with short nanowires were formed on bare Ni foam by hydrothermal method, while large-scale ZnCoOnanowires arrays homogeneously aligned and separated adequately on Ni foam coated with graphene. This ZnCoOnanowire structure exhibited superior supercapacitors properties. The excellent supercapacitors were mainly attributed to the large specific surface and the porosity on the nanowires which promoted the electrons and ions transportation. In addition, graphene improved conductivity of substrate for current collecting.
基金National Natural Science Foundation of China,Grant/Award Numbers:51861005,52071092,U20A20237Guangxi Natural Science Foundation,Grant/Award Numbers:2019GXNSFDA245023,2019GXNSFGA245005,2020GXNSFGA297004,2021GXNSFFA196002Guangxi Bagui Scholar Foundation。
文摘The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leakageproofing method.In this study,a novel carbonized Cu-coated melamine foam(MF)/reduced graphene oxide(rGO)framework(MF/rGO/Cu-C)is constructed as a support for fabricating stabilized multifunctional OPCMs.MF serves as the supporting material,while rGO and Cu act as functional reinforcements.As a thermal energy storage material,polyethylene glycol(PEG)is encapsulated into MF/rGO/Cu-C through a vacuum-assisted impregnation method to obtain PEG@MF/rGO/Cu-C composite with excellent comprehensive performance.PEG@MF/rGO/Cu-C exhibits high phase change enthalpies of 148.3 J g^(-1)(melting)and 143.9 J g^(-1)(crystallization),corresponding to a high energy storage capability of 92.7%.Simultaneously,MF/rGO/Cu-C endues the composite with an enhanced thermal conductivity of 0.4621Wm^(-1) K^(-1),which increases by 463%compared to that of PEG@MF.Furthermore,PEG@MF/rGO/Cu-C displays great light-to-thermal and electric-to-thermal conversion capabilities,thermal cycle stability,light-tothermal cycle stability,and shape stability,showing promising application prospects in different aspects.
基金The authors would like to thank the National High Technology Research and Development Plan of China(2015AA043505)the National Science Foundation of China(21574086)+5 种基金Shenzhen Sci&Tech(research grant ZDSYS201507141105130)the Shenzhen City Science,Technology Plan Project(JCYJ20160520171103239)Equipment Advanced Research Funds(61402100401)Equipment Advanced Research Key Laboratory Funds(6142804180106)Shenzhen Fundamental Research Funds(JCYJ20180508151910775)the National Natural Science Foundation of China(11850410427)for financial support.
文摘Graphene foam is becoming a material of choice for magnetoelectronic devices due to its large,linear and unsaturated room temperature magnetoresistance.However,the magnetoresistance of graphene foam is not as large as that of monolayer graphene.Herein,we describe how magnetoresistance^100%was detected at room temperature under a magnetic field of 5 T that is comparable to the magnetoresistance in monolayer graphene;the highest magnetoresistance of^158%was detected at 5 K under a magnetic field of 5 T.Unlike monolayer graphene,graphene foam is far more comfortable with producing in gram scale and utilizing in magnetoelectronic devices.
基金The authors are grateful for the financial support of the National Natural Science Foundation of China(21673131)the Natural Science Foundation of Fujian Province(2019J01800).
文摘Electrochemical properties of lithium-sulfur(Li-S)batteries are mainly hindered by both the insulating nature of elemental sulfur(i.e.,molecular S8)and the shuttling effect or sluggish redox kinetics of lithium polysulfide intermediates(Li_(2)S_(n),3≤n≤8).In this paper,a three-dimensional mesoporous reduced graphene oxide-based nanocomposite,with the embedding of metallic Co nanoparticles and the doping of elemental N(Co/NrGO),and its simply ground mixture with powdered S at a mass ratio of 1:6(Co/NrGO/S)are prepared and used as cathode-/separator-coated interlayers and working electrodes in assembled Li-S cells,respectively.One of the effective cell configurations is to paste composite Co/NrGO onto both the S-loading cathode and separator,showing good cycling stability(1070mAh g^(−1) in the 100th cycle at 0.2 C),highrate capability(835mAh g^(−1),2.0 C),and excellent durability(905mAh g^(−1) in the 250th cycle at 0.5 or 0.2 C).Compared with the experimental results of Co-absent NrGO,electrochemical properties of various Co/NrGO-based cell configurations clearly show multiple functions of Co/NrGO,indicating that the absence of Co/NrGO coatings and/or Co nanoparticles may be inadequate to achieve superior S availability of assembled Li-S batteries.
基金the Link Project of the National Natural Science Foundation of China and Guangdong Province(Grant no.U1301244)the National Natural Science Foundation of China(Grant nos.51573215,21506260)+2 种基金Guangdong Province Science&Technology Foundation(2011B050300008)Guangdong Natural Science Foundation(Grant nos.2014A030313159,2016A030313354)Guangzhou Scientific and Technological Planning Project(2014J4500002,201607010042)for financial support of this work
文摘Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffusion of polysulfide intermediate into the electrolyte still hamper their practical applications.And the reported preparation procedures to sulfur based cathode materials are often complex, and hence are rather difficult to produce at large scale. Here, we report a simple mechano-chemical sulfurization methodology in vacuum environment applying ball-milling method combined both the chemical and physical interaction for the one-pot synthesis of edge-sulfurized grapheme nanoplatelets with 3D porous foam structure as cathode materials. The optimal sample of 70%S–Gn Ps-48 h(ball-milled 48 h) obtains 13.2 wt% sulfur that chemically bonded onto the edge of Gn Ps. And the assembled batteries exhibit high initial discharge capacities of 1089 mAh/g at 0.1 C and 950 mAh/g at 0.5 C, and retain a stable discharge capacity of 776 mAh/g after 250 cycles at 0.5 C with a high Coulombic efficiency of over 98%. The excellent performance is mainly attributed to the mechano-chemical interaction between sulfur and grapheme nanoplatelets. This definitely triggers the currently extensive research in lithium–sulfur battery area.
基金financially supported by the National Science Foundation of China(Nos.51572007 and 51622203),"Recruitment Program of Global Experts"
文摘2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. However, the serious restacking and aggregation of the 2D nanosheets are still hampering their applications. To circumvent the issues of 2D nanosheets, one efficient strategy is to construct 3D structures with hierarchical porous structures, good chemical/mechanical stabilities and tunable electrical conductivities. In this review, we firstly focus on the available synthetic approaches of 3D structures from 2D nanosheets, and then summarize the relationships between the microstructures of 3D structures built from 2D nanosheets and their electrochemical behaviors for lithium storage. On the basis of above results, some challenges are briefly discussed in the perspective of the development of various functional 3D structures.
文摘A three-dimensional graphene-based composite was prepared by a simple one-step in-site reduced-oxide method under atmospheric pressure. The obtained hydrogel was modified with 4-amino-benzenesulfonic acid and connected with ethylenediamine, and freeze-dried into an aerogel, which was characterized. Then the surface interaction with platinum (Pt, IV) was explored. The obtained aerogel showed good adsorption for Pt (IV) at acid conditions, giving a rising to the adsorption rate > 98% while pH ≥ 6. Using hexadecyl trimethyl ammonium bromide of 2% (m/V) as an eluent to desorb the Pt (IV) from the surface of the aerogel, a desorption rate of 81.1% was obtained in this process. Urea, buffer aquation and other surfactants were used in the desorption experiment to understand the adsorption mechanism between the aerogel and Pt (IV). In this work, hydrogen bond, van der Waals force and electronic interaction force mainly drove the adsorption process. For obtaining more purified Pt (IV), we used 0.5% CTAB to desorb Pd (II). A new three-dimensional graphene-based composite was prepared and the surface interaction between Pt (IV) and composite was experimented for understanding the adsorption mechanism and exploring its potential application in sample preparation in low concentration.
基金the GDAS’Project of Science and Technology Development(No.2020GDASYL-20200103044)Key-Area Research and Development Program of Guangdong(No.2020B1111350002)+1 种基金the National Key R&D Program of China(No.2019YFC1805305)the Project of Water Resource Department of Guangdong Province(No.2017-18).
文摘New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment.Electro-Fenton technology is an effective method to remove PPCPs from water.Novel particle electrodes(MMT/rGO/Fe_(3)O_(4))were synthesized by depositing Fe3O4 nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional electro-Fenton(3D-EF)system.The electrodes combined the catalytic property of Fe3O4,hydrophilicity of montmorillonite and electrical conductivity of graphene oxides,and applied for the degradation of Acyclovir(ACV)with high efficiency and ease of operation.At optimal condition,the degradation rate of ACV reached 100%within 120 min,and the applicable pH range could be 3 to 11 in the 3D-EF system.The stability and reusability of MMT/rGO/Fe_(3)O_(4)particle electrodes were also studied,the removal rate of ACV remained at 92%after 10 cycles,which was just slightly lower than that of the first cycle.Potential degradation mechanisms were also proposed by methanol quenching tests and FT-ICR-MS.
基金financially supported by the National Natural Science Foundation of China(Nos. 21465014 and 21465015)the Ground Plan of Science and Technology Projects of Jiangxi Educational Committee(No.KJLD14023)
文摘A novel supercapacitor based on ultralight and elastic three-dimensional (3D) porous melamine foam (MF)-derived macroporous carbon (3DPMFDMC)/reduced graphene oxide (rGO)/polyaniline (PANI) nanocomposites (denoted as 3DPMFDMC/rGO/PANI) were fabricated. By high temperature carboniza-tion, the commercial MF soaked in GO solution was prepared into ultralight and elastic 3DPMFDMC, the rGO were uniformly distributed into 3DPMFDMC to obtain 3DPMFDMC/rGO, and finally PANI was grown on the 3DPMFDMC/rGO by using in situ chemical oxidation polymerization method. The obtained 3DPMFDMC/rGO/PANI nanocomposites were characterized by SEM, FT-IR and Raman. The results showed the uniform distribution of rGO connected the broken fibers of 3DPMFDMC produced in the high temperature carbonization to improve the electrical conductivity and also enlarged the specific surface area of nanocomposites greatly. Lots of PANI were vertically arrayed on the surface of 3DPMFDMC/rGO. 3DPMFDMC/rGO/PANI exhibited a rapid electron/mass transport. Owing to its special structures and nanocomposites, the supercapacitor showed good electrical performance with a specific capacitance of 1870 F/g at the current density of 1 A/g. Moreover, the specific capacitance remained 95.4%after 1000 charging/discharging cycles at a current density of 5 A/g.
基金financially supported by the Natural Science Foundation of Zhejiang Province (LY18H200008)Wenzhou Science and Technology Bureau Project (Y20170203)National Natural Science Foundation of China (51433005)
文摘In this study, we have for the first time preformed the facile substrate-enhanced electroless deposition(SEED) of metal nanoparticles onto monolithic graphene@Ni foams for construction of disposable three-dimensional(3 D) electrochemical immunosensors. Specifically, we firstly used the SEED method to deposit gold nanoparticles(AuNPs) onto the graphene@Ni foam for immobilization of antibody(Ab1). This is followed by a second step SEED deposition to produce silver nanoparticles(AgNPs) for electrochemical stripping detection. Using a-fetoprotein antigen(AFP) as a module analyte, the newly-developed sensor showed a wide linear response, ranging from 5.0 pg/mL to 5.0 ng/mL and a low detection limit down to 2.3 pg/mL. The newly-developed 3 D-immunosensor is sensitive, reliable,and easy to be fabricated, showing great potential for clinic applications.
基金supports from the National Natural Science Foundation of China(Grant Nos.22238012,22178384,21908245,and 52002363)the Science Foundation of China University of Petroleum,Beijing(Grant No.ZX20220079).
文摘Polyurethane(PU)foams are widely used in thermal management materials due to their good flexibility.However,their low thermal conductivity limits the efficiency.To address this issue,we developed a new method to produce tannic acid(TA)-modified graphene nanosheets(GTs)-encapsulated PU(PU@GT)foams using the soft template microstructure and a facile layer-by-layer(L-B-L)assembly method.The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional(3D)highly interconnected thermal networks.These networks are further infiltrated with polydimethylsiloxane(PDMS).The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m^(−1)·K^(−1) at a low filler loading of 7.9 wt.%,which is 1115%higher than that of the polymer matrix.Moreover,the mechanical property of the composite is~2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network.This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance,which implies a promising future in thermal management systems of electronic devices.
基金financial support from the National Natural Science Foundation of China(No.22279097)the Key R&D Program of Hubei Province(No.2023BAB103)+1 种基金the Foundation of National Key Laboratory of Microwave Imaging Technology,the China Postdoctoral Science Foundation(No.2023M732723)the Fundamental Research Funds for the Central Universities(No.WUT: 2022IVA172).
文摘High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (k ⊥), but their excessively high content or intrinsic rigidness deteriorate TIMs softness, leading to worsening for thermal contact resistance (R contact). In this study, 2D graphene materials are fabricated into lightweight and soft graphene foams (GFs) with high-orientation, acting as vertical filler frameworks to optimize the k ⊥ and R contact for vertical GF (VGF) TIMs. The VGF-TIM has a high k ⊥ of 47.9 W·m^(−1)·K^(−1) at a low graphene content of 15.5 wt.%. Due to the softness and low filler contents of GFs, the VGF-TIM exhibits a low compressive module (4.2 MPa), demonstrating excellent compressibility. The resulting TIM exhibit a low contact resistance of 24.4 K·mm2·W^(−1), demonstrating 185.1% higher cooling efficiency in practical heat dissipating scenario compared to commercial advanced TIMs. This work provides guidelines for the design of advanced TIMs and their applications in thermal management.