Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and ...Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and mechanical properties.Recently,the application of graphene-based composites in energetic materials has received extensive attention.This review mainly summarizes the applications of graphene and graphene-based nanomaterials in energetic materials.The effects of these materials on the thermal stability,sensitivity,mechanical property,ignition and combustion of energetic materials were discussed.Furthermore,the progress of functionalized modification of graphene has been summarized,including covalent bonding modification and doping modification.These studies show that graphenebased materials exhibit excellent performances and might emerge as promising candidate for energetic materials.展开更多
Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widesp...Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widespread attention and research.This article reviews the mixing and sintering processes in the preparation of graphene/ceramic com-posites,as well as the toughening mechanism of graphene on ceramic materials.It also looks forward to how to further enhance the toughening effect of graphene.展开更多
Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent prob...Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent problem necessarily to be solved.In this study,we present a theoretical demonstration of actively tuningα-MoO_(3) PhPs using phase change material VO_(2) and graphene.It is observed thatα-MoO_(3) PhPs are greatly dependent on the propagation plane angle of PhPs.The insulator-to-metal phase transition of VO_(2) has a significant effect on the hybridization PhPs of theα-MoO_(3)/VO_(2) structure and allows to obtain actively tunableα-MoO_(3) PhPs,which is especially obvious when the propagation plane angle of PhPs is 900.Moreover,when graphene surface plasmon sources are placed at the top or bottom ofα-MoO_(3) inα-MoO_(3)/VO_(2)structure,tunable coupled hyperbolic plasmon-phonon polaritons inside its Reststrahlen bands(RB s)and surface plasmonphonon polaritons outside its RBs can be achieved.In addition,the above-mentionedα-MoO_(3)-based structures also lead to actively tunable anisotropic spontaneous emission(SE)enhancement.This study may be beneficial for realization of active tunability of both PhPs and SE ofα-MoO_(3),and facilitate a deeper understanding of the mechanisms of anisotropic light-matter interaction inα-MoO_(3) using functional materials.展开更多
To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel...To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel. PANI grows on the GN surface as a thin film, and its content in the composite is controlled by the concentration of the reaction monomer. The specific capacitance of the 3DGN/PANI composite containing 10 wt% PANI reaches 322.8 F.g-1 at a current density of 1 A.g-1, nearly twice as large as that of the pure 3DGN (162.8 F.g-1). The capacitance of the composite is 307.9 F.g-1 at 30 A.g-1 (maintaining 95.4%), and 89% retention after 500 cycles. This study demonstrates the exciting potential of 3DGN/PANI with high capacitance, excellent rate capability and long cycling life for supercapacitors.展开更多
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi...Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.展开更多
This paper describes the spectral and morphological analysis of graphene, N-doped graphene, and graphenemodified with functional groups. The similarities and differences in the surface and microstructure are character...This paper describes the spectral and morphological analysis of graphene, N-doped graphene, and graphenemodified with functional groups. The similarities and differences in the surface and microstructure are characterizedby infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, andtransmission electron microscopy. Compared with high-purity graphene, the introduction of functional groups leads to moredefects in the two-dimensional structure. The quality of graphene, reflected by the intensity ratio of peak D and G modesin the Raman spectroscopy, is consistent with that observed by scanning electron microscopy and transmission electronmicroscopy. The infrared spectra of graphene-based two-dimensional carbon materials are different from that of high-puritygraphene, and the absorption peaks of the functional groups are obvious. The X-ray photoelectron spectroscopy resultsillustrate the diverse chemical states of carbon, and the atomic ratio of carbon to oxygen directly reflects the quality ofthe graphene-based materials. The results of electron microscopy and spectroscopic characterization of graphene samplesprovide an excellent basis for a wide range of applications in graphene production and quality control.展开更多
A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O ...A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O particles and rGO distribute hierarchically and the primary Cu2O particles are encapsulated well in the graphene nanosheets. The electrochemical performance of Cu2O/rGOs is enhanced compared with bare Cu2O when they are employed as anode materials for lithium ion batteries. The Cu2O/rGO composites maintain a reversible capacity of 348.4 mA?h/g after 50 cycles at a current density of 100 mA/g. In addition, the composites retain 305.8 mA?h/g after 60 cycles at various current densities of 50, 100, 200, 400 and 800 mA/g.展开更多
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t...Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.展开更多
A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor...A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).展开更多
Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the...Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state.展开更多
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research...The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.展开更多
A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanopart...A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanoparticles (3-5 nm) distribute uniformly on the surface of graphene. The CoO/graphene nanohybrids display high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (650 mA-h/g after 50 cycles, almost twice that of commercial graphite anode), high coulombic efficiency (over 95%) and excellent cycling stability. The extraordinary performance arises from the structure of the nanohybrids: the nanosized CoO particles with high dispersity on conductive graphene substrates are beneficial for lithium-ion insertion/extraction, shortening diffusion length for lithium ions and improving conductivity, thus the lithium storage performance was improved.展开更多
The rational synthesis of a two-dimensional(2D)porous aromatic framework(PAF)with a controllable growth direction remains a challenge to overcome the limitation of traditional stacked 2D materials.Herein,a step-growth...The rational synthesis of a two-dimensional(2D)porous aromatic framework(PAF)with a controllable growth direction remains a challenge to overcome the limitation of traditional stacked 2D materials.Herein,a step-growth strategy is developed to fabricate a vertically oriented nitrogen-rich porous aromatic framework on graphene oxide(V-PAF-GO)using monolayer benzidine-functionalized GO(BZ-GO)as a molecular pillar.Then,the confined Co nanoparticle(NP)catalysts are synthesized by encapsulating ultra-small Co into the slit pores of V-PAF-GO.Due to the high nitrogen content,large specific surface area,and adequate slit pores,the optimized vertical nanocomposites V-PAF-GO provide abundant anchoring sites for metal NPs,leading to ultrafine Co NPs(1.4 nm).The resultant Co/V-PAF-GO catalyst shows an extraordinary catalytic activity for ammonia borane(AB)methanolysis,yielding a turnover frequency value of 47.6 min−1 at 25°C,comparable to the most effective non-noble-metal catalysts ever reported for AB methanolysis.Experimental and density functional theory studies demonstrate that the electron-donating effect of N species of PAF positively corresponds to the low barrier in methanol molecule activation,and the cleavage of the O–H bond in CH3OH has been proven to be the rate-determining step for AB methanolysis.This work presents a versatile step-growth strategy to prepare a vertically oriented PAF on GO to solve the stacking problem of 2D materials,which will be used to fabricate other novel 2D or 2D–2D materials with controllable orientation for various applications.展开更多
Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites ob...Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites obtained at 350 °C maintained a high specific capacity of 1,257 m Ah g-1even after 200 cycles at 0.1 A g-1. Furthermore,the obtained materials also have better rate capability, and it can be maintained to 696, 495, 308, and 254 m Ah g-1at 1, 2,5, and 10 A g-1, respectively. The enhancements realized in the reversible capacity and cyclic stability can be attributed to the good improvement in the electrical conductivity achieved by annealing at appropriate temperature, and the electrochemical nature of Co Fe2O4 and GNSs during discharge–charge processes.展开更多
Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,i...Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring.展开更多
The recent development of synthesis processes to assemble graphene sheets into porous three-dimensional (3D)macroscopic structures are reviewed, including our efforts on 3D graphene structures. Mechanisms for buildi...The recent development of synthesis processes to assemble graphene sheets into porous three-dimensional (3D)macroscopic structures are reviewed, including our efforts on 3D graphene structures. Mechanisms for building 3D graphene architectures and their composite materials are also summarized. The functional systems based on 3D graphene architectures provide a significant enhancement in the efficacy due to their unique structures and properties.展开更多
We review experimental and theoretical results on thermal transport in semiconductor nanostructures(multilayer thin films, core/shell and segmented nanowires), single-and few-layer graphene, hexagonal boron nitride,...We review experimental and theoretical results on thermal transport in semiconductor nanostructures(multilayer thin films, core/shell and segmented nanowires), single-and few-layer graphene, hexagonal boron nitride, molybdenum disulfide, and black phosphorus. Different possibilities of phonon engineering for optimization of electrical and heat conductions are discussed. The role of the phonon energy spectra modification on the thermal conductivity in semiconductor nanostructures is revealed. The dependence of thermal conductivity in graphene and related two-dimensional(2 D) materials on temperature, flake size, defect concentration, edge roughness, and strain is analyzed.展开更多
The isolation of the first two-dimensional material, graphene-a monolayer of carbon atoms arranged in a hexagonal lattice-opened new exciting opportunities in the field of condensed matter physics and materials. Its i...The isolation of the first two-dimensional material, graphene-a monolayer of carbon atoms arranged in a hexagonal lattice-opened new exciting opportunities in the field of condensed matter physics and materials. Its isolation and subsequent studies demonstrated that it was possible to obtain sheets of atomically thin crystals and that these were stable, and they also began to show its outstanding properties, thus opening the door to a whole new family of materials, known as two-dimensional materials or 2D materials. The great interest in different 2D materials is motivated by the variety of properties they show, being candidates for numerous applications.Additionally, the combination of 2D crystals allows the assembly of composite, on-demand materials, known as van der Waals heterostructures, which take advantage of the properties of those materials to create functionalities that otherwise would not be accessible. For example, the combination of 2D materials, which can be done with high precision, is opening up opportunities for the study of new challenges in fundamental physics and novel applications. Here we review the latest fundamental discoveries in the area of 2D materials and offer a perspective on the future of the field.展开更多
Aqueous rechargeable zinc ion batteries are very attractive in large-scale storage applications,because they have high safety,low cost and good durability.Nonetheless,their advancements are hindered by a dearth of pos...Aqueous rechargeable zinc ion batteries are very attractive in large-scale storage applications,because they have high safety,low cost and good durability.Nonetheless,their advancements are hindered by a dearth of positive host materials(cathode)due to sluggish diffusion of Zn2+in the solid inorganic frameworks.Here,we report a novel organic electrode material of poly 3,4,9,10-perylentetracarboxylic dianhydride(PPTCDA)/graphene aerogel(GA).The 3D interconnected porous architecture synthesized through a simple solvothermal reaction,where the PPTCDA is homogenously embedded in the GA nanosheets.The self-assembly of PPTCDA/GA coin-type cell will not only significantly improve the durability and extend lifetime of the devices,but also reduce the electronic waste and economic cost.The self-assembled structure does not require the auxiliary electrode and conductive agent to prepare the electrode material,which is a simple method for preparing the coin-type cell and a foundation for the next large-scale production.The PPTCDA/GA delivers a high capacity of≥200 m Ah g^–1 with the voltage of 0.0~1.5 V.After 300 cycles,the capacity retention rate still close to 100%.The discussion on the mechanism of Zn2+intercalation/deintercalation in the PPTCDA/GA electrode is explored by Fourier transform infrared spectrometer(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)characterizations.The morphology and structure of PPTCDA/GA are examined by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).展开更多
Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional re...Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional reality will result in strong anisotropic thermal conductivity and wrinkles or even crumples that significantly sacrifices its inherent properties in practical applications.One strategy to overcome this is to use three-dimensional(3D)architecture of graphene.Herein,3D graphene structure with covalent-bonding nanofins(3D-GS-CBF)is proposed,which is then used as the filler to demonstrate effective aqueous medium.The thermal conductivity and thermal conductivity enhancement efficiency of 3D-GS-CBF(0.26 vol%)aqueous medium can be as high as 2.61 W m-1 K-1 and 1300%,respectively,around six times larger than highest value of the existed aqueous mediums.Meanwhile,3D-GS-CBF can be stable in the solution even after 6 months,addressing the instability issues of conventional graphene networks.A multiscale modeling including non-equilibrium molecular dynamics simulations and heat conduction model is applied to interpret experimental results.3D-GS-CBF aqueous medium can largely improve the solar vapor evaporation rate(by 1.5 times)that are even comparable to the interfacial heating system;meanwhile,its cooling performance is also superior to commercial coolant in thermal management applications.展开更多
基金funding support from Startup Foundation for Docotors of Yan’an University(Grant No.YAU205040372)Project of Science and Technology Office of Shaanxi Province(Grant No.2023-JC-QN-0152)。
文摘Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and mechanical properties.Recently,the application of graphene-based composites in energetic materials has received extensive attention.This review mainly summarizes the applications of graphene and graphene-based nanomaterials in energetic materials.The effects of these materials on the thermal stability,sensitivity,mechanical property,ignition and combustion of energetic materials were discussed.Furthermore,the progress of functionalized modification of graphene has been summarized,including covalent bonding modification and doping modification.These studies show that graphenebased materials exhibit excellent performances and might emerge as promising candidate for energetic materials.
文摘Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widespread attention and research.This article reviews the mixing and sintering processes in the preparation of graphene/ceramic com-posites,as well as the toughening mechanism of graphene on ceramic materials.It also looks forward to how to further enhance the toughening effect of graphene.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52204258 and 52106099)the Postdoctoral Research Foundation of China (Grant No.2023M743779)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No.2022QN1017)the Key Research Development Projects in Xinjiang Uygur Autonomous Region (Grant No.2022B03003-3)the Shandong Provincial Natural Science Foundation (Grant No.ZR2020LLZ004)。
文摘Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent problem necessarily to be solved.In this study,we present a theoretical demonstration of actively tuningα-MoO_(3) PhPs using phase change material VO_(2) and graphene.It is observed thatα-MoO_(3) PhPs are greatly dependent on the propagation plane angle of PhPs.The insulator-to-metal phase transition of VO_(2) has a significant effect on the hybridization PhPs of theα-MoO_(3)/VO_(2) structure and allows to obtain actively tunableα-MoO_(3) PhPs,which is especially obvious when the propagation plane angle of PhPs is 900.Moreover,when graphene surface plasmon sources are placed at the top or bottom ofα-MoO_(3) inα-MoO_(3)/VO_(2)structure,tunable coupled hyperbolic plasmon-phonon polaritons inside its Reststrahlen bands(RB s)and surface plasmonphonon polaritons outside its RBs can be achieved.In addition,the above-mentionedα-MoO_(3)-based structures also lead to actively tunable anisotropic spontaneous emission(SE)enhancement.This study may be beneficial for realization of active tunability of both PhPs and SE ofα-MoO_(3),and facilitate a deeper understanding of the mechanisms of anisotropic light-matter interaction inα-MoO_(3) using functional materials.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CB932700 and 2011CB932703)the National Natural Science Foundation of China(Grant Nos.61335006,61378073,and 61077044)+1 种基金the Beijing Natural Science Foundation,China(Grant No.4132031)the Fundamental Research Funds for the Central Universities of Beijing Jiaotong University,China(Grant No.2014YJS136)
文摘To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel. PANI grows on the GN surface as a thin film, and its content in the composite is controlled by the concentration of the reaction monomer. The specific capacitance of the 3DGN/PANI composite containing 10 wt% PANI reaches 322.8 F.g-1 at a current density of 1 A.g-1, nearly twice as large as that of the pure 3DGN (162.8 F.g-1). The capacitance of the composite is 307.9 F.g-1 at 30 A.g-1 (maintaining 95.4%), and 89% retention after 500 cycles. This study demonstrates the exciting potential of 3DGN/PANI with high capacitance, excellent rate capability and long cycling life for supercapacitors.
基金flnancial support by the National Natural Science Foundation of China (52102055, 5227020331, 52075527)National Key R&D Program of China (2017YFB0406000 and 2017YFE0128600)+8 种基金the Project of the Chinese Academy of Sciences (XDC07030100, XDA22020602, ZDKYYQ20200001 and ZDRW-CN-2019-3)CAS Youth Innovation Promotion Association (2020301)Science and Technology Major Project of Ningbo (2021Z120, 2021Z115, 2022Z084, 2018B10046 and 2016S1002)the Natural Science Foundation of Ningbo (2017A610010)Foundation of State Key Laboratory of Solid lubrication (LSL-1912)China Postdoctoral Science Foundation (2020M681965, 2022M713243)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (6142905192806)K.C. Wong Education Foundation (GJTD-2019-13)the 3315 Program of Ningbo for financial support
文摘Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.
基金the Research Program of China Petrochemical Corporation(SINOPEC 420043-9 and 122074).
文摘This paper describes the spectral and morphological analysis of graphene, N-doped graphene, and graphenemodified with functional groups. The similarities and differences in the surface and microstructure are characterizedby infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, andtransmission electron microscopy. Compared with high-purity graphene, the introduction of functional groups leads to moredefects in the two-dimensional structure. The quality of graphene, reflected by the intensity ratio of peak D and G modesin the Raman spectroscopy, is consistent with that observed by scanning electron microscopy and transmission electronmicroscopy. The infrared spectra of graphene-based two-dimensional carbon materials are different from that of high-puritygraphene, and the absorption peaks of the functional groups are obvious. The X-ray photoelectron spectroscopy resultsillustrate the diverse chemical states of carbon, and the atomic ratio of carbon to oxygen directly reflects the quality ofthe graphene-based materials. The results of electron microscopy and spectroscopic characterization of graphene samplesprovide an excellent basis for a wide range of applications in graphene production and quality control.
基金Project (2014CB643406) supported by the National Basic Research Program of ChinaProject (2011FJ1005) supported by Major Special Project of Science and Technology of Hunan Province,China
文摘A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O particles and rGO distribute hierarchically and the primary Cu2O particles are encapsulated well in the graphene nanosheets. The electrochemical performance of Cu2O/rGOs is enhanced compared with bare Cu2O when they are employed as anode materials for lithium ion batteries. The Cu2O/rGO composites maintain a reversible capacity of 348.4 mA?h/g after 50 cycles at a current density of 100 mA/g. In addition, the composites retain 305.8 mA?h/g after 60 cycles at various current densities of 50, 100, 200, 400 and 800 mA/g.
基金King Abdulaziz City for Science and Technology (KACST) for the fellowshipfunding from the European Union’s Horizon 2020 research and innovation program GRAPHENE Flagship Core 3 under agreement No.: 881603+2 种基金funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk?odowska-Curie grant agreement No. 945363funding from the Shanghai Pujiang Program (22PJ1401200)the National Natural Science Foundation of China (No. 52302229)
文摘Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.
文摘A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).
基金Funded by the National Natural Science Foundation of China(No.52104363)。
文摘Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state.
文摘The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.
基金Project (4340142501) supported by Start-up Funds of Chair Professor, Tongji University, ChinaProject (51173135) supported by the National Natural Science Foundation of China
文摘A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanoparticles (3-5 nm) distribute uniformly on the surface of graphene. The CoO/graphene nanohybrids display high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (650 mA-h/g after 50 cycles, almost twice that of commercial graphite anode), high coulombic efficiency (over 95%) and excellent cycling stability. The extraordinary performance arises from the structure of the nanohybrids: the nanosized CoO particles with high dispersity on conductive graphene substrates are beneficial for lithium-ion insertion/extraction, shortening diffusion length for lithium ions and improving conductivity, thus the lithium storage performance was improved.
基金National Natural Science Foundation of China,Grant/Award Number:22162014 and 22162013Natural Science Foundation of Jiangxi Province of China,Grant/Award Number:20212ACB204009+1 种基金Sponsored Program for Academic and Technical Leaders of Major Disciplines of Jiangxi Province of China,Grant/Award Number:20212BCJL23059Doctoral Research Foundation Project of Tongren University,Grant/Award Number:trxyDH2204。
文摘The rational synthesis of a two-dimensional(2D)porous aromatic framework(PAF)with a controllable growth direction remains a challenge to overcome the limitation of traditional stacked 2D materials.Herein,a step-growth strategy is developed to fabricate a vertically oriented nitrogen-rich porous aromatic framework on graphene oxide(V-PAF-GO)using monolayer benzidine-functionalized GO(BZ-GO)as a molecular pillar.Then,the confined Co nanoparticle(NP)catalysts are synthesized by encapsulating ultra-small Co into the slit pores of V-PAF-GO.Due to the high nitrogen content,large specific surface area,and adequate slit pores,the optimized vertical nanocomposites V-PAF-GO provide abundant anchoring sites for metal NPs,leading to ultrafine Co NPs(1.4 nm).The resultant Co/V-PAF-GO catalyst shows an extraordinary catalytic activity for ammonia borane(AB)methanolysis,yielding a turnover frequency value of 47.6 min−1 at 25°C,comparable to the most effective non-noble-metal catalysts ever reported for AB methanolysis.Experimental and density functional theory studies demonstrate that the electron-donating effect of N species of PAF positively corresponds to the low barrier in methanol molecule activation,and the cleavage of the O–H bond in CH3OH has been proven to be the rate-determining step for AB methanolysis.This work presents a versatile step-growth strategy to prepare a vertically oriented PAF on GO to solve the stacking problem of 2D materials,which will be used to fabricate other novel 2D or 2D–2D materials with controllable orientation for various applications.
基金supported by the Program of National Natural Science Foundation of China (21071097, 20901050)National Basic Research Program of China (2014CB239700)+1 种基金Shanghai Nano-Project (12 nm0503502)Minhang District Developing Project
文摘Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites obtained at 350 °C maintained a high specific capacity of 1,257 m Ah g-1even after 200 cycles at 0.1 A g-1. Furthermore,the obtained materials also have better rate capability, and it can be maintained to 696, 495, 308, and 254 m Ah g-1at 1, 2,5, and 10 A g-1, respectively. The enhancements realized in the reversible capacity and cyclic stability can be attributed to the good improvement in the electrical conductivity achieved by annealing at appropriate temperature, and the electrochemical nature of Co Fe2O4 and GNSs during discharge–charge processes.
基金the National Key Research and Development Program of China(2017YFB1104300).
文摘Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11004230, 51172273, 11290161, and 11027402)the National Basic Research Program of China (Grant Nos. 2012CB933003 and 2013CB932603)the Chinese Academy of Sciences (Grant No. KJCX2-YW-W35)
文摘The recent development of synthesis processes to assemble graphene sheets into porous three-dimensional (3D)macroscopic structures are reviewed, including our efforts on 3D graphene structures. Mechanisms for building 3D graphene architectures and their composite materials are also summarized. The functional systems based on 3D graphene architectures provide a significant enhancement in the efficacy due to their unique structures and properties.
基金Project supported by the Republic of Moldova through the projects 15.817.02.29F and 17.80013.16.02.04/Ua
文摘We review experimental and theoretical results on thermal transport in semiconductor nanostructures(multilayer thin films, core/shell and segmented nanowires), single-and few-layer graphene, hexagonal boron nitride, molybdenum disulfide, and black phosphorus. Different possibilities of phonon engineering for optimization of electrical and heat conductions are discussed. The role of the phonon energy spectra modification on the thermal conductivity in semiconductor nanostructures is revealed. The dependence of thermal conductivity in graphene and related two-dimensional(2 D) materials on temperature, flake size, defect concentration, edge roughness, and strain is analyzed.
基金financial support through the project Medium-Sized Centre programme R-723-000-001-281support from EU Flagship Programs (Graphene CNECTICT-604391 and 2D-SIPC Quantum Technology)European Research Council Synergy Grant Hetero2D, the Royal Society, EPSRC grants EP/N010345/1, EP/ P026850/1, EP/S030719/1.
文摘The isolation of the first two-dimensional material, graphene-a monolayer of carbon atoms arranged in a hexagonal lattice-opened new exciting opportunities in the field of condensed matter physics and materials. Its isolation and subsequent studies demonstrated that it was possible to obtain sheets of atomically thin crystals and that these were stable, and they also began to show its outstanding properties, thus opening the door to a whole new family of materials, known as two-dimensional materials or 2D materials. The great interest in different 2D materials is motivated by the variety of properties they show, being candidates for numerous applications.Additionally, the combination of 2D crystals allows the assembly of composite, on-demand materials, known as van der Waals heterostructures, which take advantage of the properties of those materials to create functionalities that otherwise would not be accessible. For example, the combination of 2D materials, which can be done with high precision, is opening up opportunities for the study of new challenges in fundamental physics and novel applications. Here we review the latest fundamental discoveries in the area of 2D materials and offer a perspective on the future of the field.
基金supported by the National Natural Science Foundation of China(51672056)Excellent Youth Project of Natural Science Foundation of Heilongjiang Province of China(YQ2019B002)+1 种基金China Postdoctoral Science Foundation(2018M630307 and 2019T120220)Fundamental Research Funds for the Central Universities(HEUCFD201732)。
文摘Aqueous rechargeable zinc ion batteries are very attractive in large-scale storage applications,because they have high safety,low cost and good durability.Nonetheless,their advancements are hindered by a dearth of positive host materials(cathode)due to sluggish diffusion of Zn2+in the solid inorganic frameworks.Here,we report a novel organic electrode material of poly 3,4,9,10-perylentetracarboxylic dianhydride(PPTCDA)/graphene aerogel(GA).The 3D interconnected porous architecture synthesized through a simple solvothermal reaction,where the PPTCDA is homogenously embedded in the GA nanosheets.The self-assembly of PPTCDA/GA coin-type cell will not only significantly improve the durability and extend lifetime of the devices,but also reduce the electronic waste and economic cost.The self-assembled structure does not require the auxiliary electrode and conductive agent to prepare the electrode material,which is a simple method for preparing the coin-type cell and a foundation for the next large-scale production.The PPTCDA/GA delivers a high capacity of≥200 m Ah g^–1 with the voltage of 0.0~1.5 V.After 300 cycles,the capacity retention rate still close to 100%.The discussion on the mechanism of Zn2+intercalation/deintercalation in the PPTCDA/GA electrode is explored by Fourier transform infrared spectrometer(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)characterizations.The morphology and structure of PPTCDA/GA are examined by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).
基金the financial support from National Natural Science Foundation of China(No.51906211)the China Postdoctoral Science Foundation(No.2019M662048)+1 种基金the Key R&D Program of Zhejiang Province(No.2019C01044)the Zhejiang Provincial Natural Science Foundation of China(No.LR17E060002)。
文摘Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional reality will result in strong anisotropic thermal conductivity and wrinkles or even crumples that significantly sacrifices its inherent properties in practical applications.One strategy to overcome this is to use three-dimensional(3D)architecture of graphene.Herein,3D graphene structure with covalent-bonding nanofins(3D-GS-CBF)is proposed,which is then used as the filler to demonstrate effective aqueous medium.The thermal conductivity and thermal conductivity enhancement efficiency of 3D-GS-CBF(0.26 vol%)aqueous medium can be as high as 2.61 W m-1 K-1 and 1300%,respectively,around six times larger than highest value of the existed aqueous mediums.Meanwhile,3D-GS-CBF can be stable in the solution even after 6 months,addressing the instability issues of conventional graphene networks.A multiscale modeling including non-equilibrium molecular dynamics simulations and heat conduction model is applied to interpret experimental results.3D-GS-CBF aqueous medium can largely improve the solar vapor evaporation rate(by 1.5 times)that are even comparable to the interfacial heating system;meanwhile,its cooling performance is also superior to commercial coolant in thermal management applications.