期刊文献+
共找到192篇文章
< 1 2 10 >
每页显示 20 50 100
Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network
1
作者 Feng Nan Zhuolin Li +3 位作者 Jie Yu Suixiang Shi Xinrong Wu Lingyu Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期26-39,共14页
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean... Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales. 展开更多
关键词 dynamic associations three-dimensional ocean temperature prediction graph neural network time series gridded data
下载PDF
Self-assembly of three-dimensional CdS nanosphere/graphene networks for efficient photocatalytic hydrogen evolution 被引量:1
2
作者 Zhijian Wang Zhi Liu +7 位作者 Jiazang Chen Hongbin Yang Jianqiang Luo Jiajian Gao Junming Zhang Cangjie Yang Suping Jia Bin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期34-38,共5页
In this work, we report the construction of three-dimensional(3D) CdS nanosphere/graphene networks by a one-step hydrothermal self-assembly route. The 3D graphene networks not only enhance the light scattering, thanks... In this work, we report the construction of three-dimensional(3D) CdS nanosphere/graphene networks by a one-step hydrothermal self-assembly route. The 3D graphene networks not only enhance the light scattering, thanks to the interconnected 3D architecture, but also improve the crystallinity of deposited CdS nanospheres, and at the same time provide a direct electron pathway to quickly separate the photogenerated electron-hole pairs from CdS, which thus dramatically improve the photocatalytic activity.The optimized 3D CdS nanosphere/graphene networks with 2 wt% of graphene could produce molecular hydrogen at a rate of 2310 μmol gcatalyst^(-1) h^(-1) under visible-light illumination(λ > 400 nm). 展开更多
关键词 CDS NANOSPHERE 3D graphene network CHARGE transfer PHOTOCATALYSIS Hydrogen evolution
下载PDF
Preparing three-dimensional graphene architectures: Review of recent developments 被引量:3
3
作者 曾敏 王文龙 白雪冬 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期93-100,共8页
The recent development of synthesis processes to assemble graphene sheets into porous three-dimensional (3D)macroscopic structures are reviewed, including our efforts on 3D graphene structures. Mechanisms for buildi... The recent development of synthesis processes to assemble graphene sheets into porous three-dimensional (3D)macroscopic structures are reviewed, including our efforts on 3D graphene structures. Mechanisms for building 3D graphene architectures and their composite materials are also summarized. The functional systems based on 3D graphene architectures provide a significant enhancement in the efficacy due to their unique structures and properties. 展开更多
关键词 graphene three-dimensional architecture SELF-ASSEMBLY template method
下载PDF
Highly Thermo-Conductive Three-Dimensional Graphene Aqueous Medium 被引量:2
4
作者 Zheng Bo Chongyan Ying +7 位作者 Huachao Yang Shenghao Wu Jinyuan Yang Jing Kong Shiling Yang Yanguang Zhou Jianhua Yan Kefa Cen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第10期224-235,共12页
Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional re... Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional reality will result in strong anisotropic thermal conductivity and wrinkles or even crumples that significantly sacrifices its inherent properties in practical applications.One strategy to overcome this is to use three-dimensional(3D)architecture of graphene.Herein,3D graphene structure with covalent-bonding nanofins(3D-GS-CBF)is proposed,which is then used as the filler to demonstrate effective aqueous medium.The thermal conductivity and thermal conductivity enhancement efficiency of 3D-GS-CBF(0.26 vol%)aqueous medium can be as high as 2.61 W m-1 K-1 and 1300%,respectively,around six times larger than highest value of the existed aqueous mediums.Meanwhile,3D-GS-CBF can be stable in the solution even after 6 months,addressing the instability issues of conventional graphene networks.A multiscale modeling including non-equilibrium molecular dynamics simulations and heat conduction model is applied to interpret experimental results.3D-GS-CBF aqueous medium can largely improve the solar vapor evaporation rate(by 1.5 times)that are even comparable to the interfacial heating system;meanwhile,its cooling performance is also superior to commercial coolant in thermal management applications. 展开更多
关键词 three-dimensional graphene Thermo-conductive aqueous medium Multiscale modeling Solar thermal conversion Practical thermal management
下载PDF
Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials
5
作者 赵文 何大伟 +2 位作者 王永生 杜翔 忻昊 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期366-371,共6页
To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel... To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel. PANI grows on the GN surface as a thin film, and its content in the composite is controlled by the concentration of the reaction monomer. The specific capacitance of the 3DGN/PANI composite containing 10 wt% PANI reaches 322.8 F.g-1 at a current density of 1 A.g-1, nearly twice as large as that of the pure 3DGN (162.8 F.g-1). The capacitance of the composite is 307.9 F.g-1 at 30 A.g-1 (maintaining 95.4%), and 89% retention after 500 cycles. This study demonstrates the exciting potential of 3DGN/PANI with high capacitance, excellent rate capability and long cycling life for supercapacitors. 展开更多
关键词 graphene/polyaniline composites electrochemical property three-dimensional graphene
下载PDF
Rational design of Co nano-dots embedded three-dimensional graphene gel as multifunctional sulfur cathode for fast sulfur conversion kinetics
6
作者 Tongtao Wan Shuming Liu +5 位作者 Changcheng Wu Zhaoyang Tan Shuanglong Lin Xiaojie Zhang Zisheng Zhang Guihua Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期132-140,共9页
Lithium-sulfur(Li-S)batteries hold great promises to serve as next-generation energy storage devices because of their high theoretical energy density and environmental benignity.However,the shuttle effect of the solub... Lithium-sulfur(Li-S)batteries hold great promises to serve as next-generation energy storage devices because of their high theoretical energy density and environmental benignity.However,the shuttle effect of the soluble lithium polysulfides(LiPS)and intrinsic insulating nature of sulfur lead to low sulfur utilization and coulombic efficiency,leading to poor cycling performance.The impeded charge transportation and retard LiPS catalytic conversion also endows the Li-S batteries with sluggish redox reaction,leading to unsatisfied rate capability.In this study,Co-based MOF material ZIF-67 is used as the precursor to prepare Co nano-dots decorated three-dimensional graphene aerogel as sulfur immobilizer.This porous architecture establishes a highly conductive interconnected framework for fast charge/mass transportation.The exposed Co nano-dots serve as active sites to strongly trap LiPS,which endows CoNDs@G with low decomposition energy barrier for fast LiPS conversion reaction and promote the completely Li2 S catalytic transformation.Li-S cells based on the Co-NDs@G cathode exhibits excellent cyclability and a high capacity retention rate of 91.1%in 100 cycles.This strategy offers a new direction to design sulfur immobilizer for accelerated LiPS conversion kinetics of Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Co nano-dots graphene network Metal-organic framework High-loading cathodes
下载PDF
Three-Dimensional Static Analysis of Nanoplates and Graphene Sheets by Using Eringen’s Nonlocal Elasticity Theory and the Perturbation Method
7
作者 Chih-Ping Wu Wei-Chen Li 《Computers, Materials & Continua》 SCIE EI 2016年第5期73-103,共31页
A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity... A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these.The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional(2D)nonlocal plate problems,the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory(CST),although with different nonhomogeneous terms.Expanding the primary field variables of each order as the double Fourier series functions in the in-plane directions,we can obtain the Navier solutions of the leading-order problem,and the higher-order modifications can then be determined in a hierarchic and consistent manner.Some benchmark solutions for the static analysis of isotropic and orthotropic nanoplates and GSs subjected to sinusoidally and uniformly distributed loads are given to demonstrate the performance of the 3D nonlocal asymptotic theory. 展开更多
关键词 Eringen’s nonlocal elasticity theory graphene sheets NANOPLATES STATIC the perturbation method three-dimensional nonlocal elasticity
下载PDF
Three-dimensional interconnected graphene network-based high-performance air electrode for rechargeable zinc‒air batteries
8
作者 Jia-Xing An Yu Meng +7 位作者 Hong-Bo Zhang Yuanzhi Zhu Xiaohua Yu Ju Rong Peng-Xiang Hou Chang Liu Hui-Ming Cheng Jin-Cheng Li 《SusMat》 SCIE EI 2024年第3期192-203,共12页
Although zinc-air batteries(ZABs)are regarded as one of the most prospective energy storage devices,their practical application has been restricted by poor air electrode performance.Herein,we developed a free-standing... Although zinc-air batteries(ZABs)are regarded as one of the most prospective energy storage devices,their practical application has been restricted by poor air electrode performance.Herein,we developed a free-standing air electrode that is fabricated on the basis of a multifunctional three-dimensional interconnected graphene network.Specifically,a three-dimensional interconnected graphene network with fast mass and electron transport ability,prepared by catalyzing growth of graphene foam on nickel foam and then filling reduced graphene oxide into the pores of graphene foam,is used to anchor iron phthalocyanine molecules with atomic Fe-N_(4)sites for boosting the oxygen reduction during discharging and nanosized FeNi hydroxides for accelerating the oxygen evolution during charging.As a result,the obtained air electrode exhibited an ultra-small electrocatalytic overpotential of 0.603 V for oxygen reactions,a high peak power density of 220.2mWcm^(-2),and a small and stable charge-discharge voltage gap of 0.70 V at 10mA cm^(-2)after 1136 cycles.Furthermore,in situ Raman spectroscopy together with theoretical calculations confirmed that phase transformation of FeNi hydroxides takes place fromα-Ni(OH)_(x)toβ-Ni(OH)_(x)toγ-Ni^((3+δ)+)OOH for the oxygen evolution reaction and Ni is the active center while Fe enhances the activity of Ni active sites. 展开更多
关键词 in situ Raman interconnected graphene network iron phthalocyanine NiFe hydroxide zinc‒air battery
原文传递
Three-Dimensional Ocean Sensor Networks:A Survey 被引量:21
9
作者 WANG Yu LIU Yingjian GUO Zhongwen 《Journal of Ocean University of China》 SCIE CAS 2012年第4期436-450,共15页
The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sens... The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces. 展开更多
关键词 ocean sensor networks underwater sensor networks three-dimensional sensor networks ocean applications 3D de-ployment topology design LOCALIZATION position-based routing
下载PDF
Efficient Preconstruction of Three‑Dimensional Graphene Networks for Thermally Conductive Polymer Composites 被引量:10
10
作者 Hao‑Yu Zhao Ming‑Yuan Yu +3 位作者 Ji Liu Xiaofeng Li Peng Min Zhong‑Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期72-111,共40页
Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ide... Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management.Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities.Compared with conventional composite fabrications by directly mixing graphene with polymers,preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances,enabling high manufacturing flexibility and controllability.In this review,we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites.Subsequently,we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications.Finally,our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites. 展开更多
关键词 graphene networks Thermal conductivity Thermal interface materials Phase change composites Anisotropic aerogels
下载PDF
Discontinuity development patterns and the challenges for 3D discrete fracture network modeling on complicated exposed rock surfaces 被引量:1
11
作者 Wen Zhang Ming Wei +8 位作者 Ying Zhang Tengyue Li Qing Wang Chen Cao Chun Zhu Zhengwei Li Zhenbang Nie Shuonan Wang Han Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2154-2171,共18页
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st... Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues. 展开更多
关键词 Complicated exposed rock surfaces Discontinuity characteristic variation three-dimensional discrete fracture network modeling Outcrop study Vegetation cover and rockfalls
下载PDF
Interconnected MXene/Graphene Network Constructed by Soft Template for Multi‑Performance Improvement of Polymer Composites 被引量:3
12
作者 Liyuan Jin Wenjing Cao +2 位作者 Pei Wang Na Song Peng Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期164-180,共17页
The multi-functionalization of polymer composites refers to the ability to connect multiple properties through simple structural design and simultaneously achieve multi-performance optimization.The large-scale design ... The multi-functionalization of polymer composites refers to the ability to connect multiple properties through simple structural design and simultaneously achieve multi-performance optimization.The large-scale design and mass production to realize the reasonable structure design of multifunctional polymer composites are urgently remaining challenges.Herein,the multifunctional MXene/graphene/polymer composites with three-dimensional thermally and electrically conductive network structures are fabricated via the utilization of the microstructure of the soft template,and a facile dispersion dip-coating approach.As a result,the polymer composites have a multiperformance improvement.At the MXene and graphene content of 18.7 wt%,the superior throughplane thermal conductivity of polymer composite is 2.44 W m^(−1)K^(−1),which is 1118%higher than that of the polymer matrix.The electromagnetic interference(EMI)shielding effectiveness of the sample reaches 43.3 dB in the range of X-band.And the mechanical property of the sample has advanced 4 times compared with the polymer matrix.The excellent EMI shielding and thermal management performance,along with the effortless and easy-to-scalable producing techniques,imply promising perspectives of the polymer composites in the next-generation smart electronic devices. 展开更多
关键词 Structural design MXene/graphene network Soft-template Thermal conductivity Electromagnetic interference shielding
下载PDF
Metal–Oleate Complex?Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance 被引量:1
13
作者 Yingying Cao Kaiming Geng +6 位作者 Hongbo Geng Huixiang Ang Jie Pei Yayuan Liu Xueqin Cao Junwei Zheng Hongwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期250-263,共14页
In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4  GN), as an anode mater... In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4  GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn_2O_4  GN consists of thermal decomposition of metal–oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a selfassembly route with reduced graphene oxides. The MnO/CoMn_2O_4  GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the di usion path of Li^+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/Co Mn_2O_4  GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li^+ charge/discharge reactions. As a result, the MnO/CoMn_2O_4  GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability. 展开更多
关键词 Metal–oleate complex Bimetallic oxides NANOPARTICLES Porous architecture 3D graphene networkS Lithium ion batteries
下载PDF
Three-Dimensional Cooperative Localization via Space-Air-Ground Integrated Networks 被引量:2
14
作者 Wenxuan Li Yuanpeng Liu +1 位作者 Xiaoxiang Li Yuan Shen 《China Communications》 SCIE CSCD 2022年第1期253-263,共11页
The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivi... The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance. 展开更多
关键词 space-air-ground integrated network(SAGIN) three-dimensional(3D)localization clock noise multi-source information
下载PDF
Polynomials of Degree-Based Indices for Three-Dimensional Mesh Network 被引量:1
15
作者 Ali N.A.Koam Ali Ahmad 《Computers, Materials & Continua》 SCIE EI 2020年第11期1271-1282,共12页
In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are ... In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are connected either directly or through some intermediate devices.These terminating and intermediate devices are considered as vertices of graph whereas wired or wireless connections among these devices are shown as edges of graph.Topological indices are used to reflect structural property of graphs in form of one real number.This structural invariant has revolutionized the field of chemistry to identify molecular descriptors of chemical compounds.These indices are extensively used for establishing relationships between the structure of nanotubes and their physico-chemical properties.In this paper a representation of sodium chloride(NaCl)is studied,because structure of NaCl is same as the Cartesian product of three paths of length exactly like a mesh network.In this way the general formula obtained in this paper can be used in chemistry as well as for any degree-based topological polynomials of three-dimensional mesh networks. 展开更多
关键词 Topological polynomials degree-based index three-dimensional mesh network chemical compounds
下载PDF
A Graphene-Based Aerogel Was Prepared as Solid Adsorbent for the Enrichment of Platinum (IV) at Trace Concentration
16
作者 Lei Chen Han Diao +1 位作者 Qijiang Shu Tao Yang 《Advances in Materials Physics and Chemistry》 CAS 2023年第2期17-29,共13页
A three-dimensional graphene-based composite was prepared by a simple one-step in-site reduced-oxide method under atmospheric pressure. The obtained hydrogel was modified with 4-amino-benzenesulfonic acid and connecte... A three-dimensional graphene-based composite was prepared by a simple one-step in-site reduced-oxide method under atmospheric pressure. The obtained hydrogel was modified with 4-amino-benzenesulfonic acid and connected with ethylenediamine, and freeze-dried into an aerogel, which was characterized. Then the surface interaction with platinum (Pt, IV) was explored. The obtained aerogel showed good adsorption for Pt (IV) at acid conditions, giving a rising to the adsorption rate > 98% while pH ≥ 6. Using hexadecyl trimethyl ammonium bromide of 2% (m/V) as an eluent to desorb the Pt (IV) from the surface of the aerogel, a desorption rate of 81.1% was obtained in this process. Urea, buffer aquation and other surfactants were used in the desorption experiment to understand the adsorption mechanism between the aerogel and Pt (IV). In this work, hydrogen bond, van der Waals force and electronic interaction force mainly drove the adsorption process. For obtaining more purified Pt (IV), we used 0.5% CTAB to desorb Pd (II). A new three-dimensional graphene-based composite was prepared and the surface interaction between Pt (IV) and composite was experimented for understanding the adsorption mechanism and exploring its potential application in sample preparation in low concentration. 展开更多
关键词 graphene Platinum (IV) AEROGEL Sample Preparation three-dimensional
下载PDF
A Novel Hydrogen-bonded Three-dimensional Network Complex Containing Nickel 被引量:1
17
作者 WANGLi LIJuan WANGEn-bo 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第2期127-130,共4页
A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural a... A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural analysis revealed that the novel compound forms three-dimensional(3D) networks by both π-π stacking and hydrogen-bonding interactions. The crystal data for the complex are a=13.853(3) nm, b=9.6892(19) nm, c=13.732(3) nm, α=90.00°, β=115.52(3)°, γ=90.00°, Z=3, R 1=0.0786, wR 2=0.1522. 展开更多
关键词 STACKING Hydrogen-bonding interaction three-dimensional(3D) network 2 6-Pyridinedicarboxylic acid
下载PDF
Three-dimensional heterogeneous electro-Fenton system with reduced graphene oxide based particle electrode for Acyclovir removal
18
作者 Nan Cai Ge Bai +4 位作者 Ting Zhang Yongqian Lei Pengran Guo Zhiliang Chen Jingwei Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期424-430,共7页
New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also du... New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment.Electro-Fenton technology is an effective method to remove PPCPs from water.Novel particle electrodes(MMT/rGO/Fe_(3)O_(4))were synthesized by depositing Fe3O4 nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional electro-Fenton(3D-EF)system.The electrodes combined the catalytic property of Fe3O4,hydrophilicity of montmorillonite and electrical conductivity of graphene oxides,and applied for the degradation of Acyclovir(ACV)with high efficiency and ease of operation.At optimal condition,the degradation rate of ACV reached 100%within 120 min,and the applicable pH range could be 3 to 11 in the 3D-EF system.The stability and reusability of MMT/rGO/Fe_(3)O_(4)particle electrodes were also studied,the removal rate of ACV remained at 92%after 10 cycles,which was just slightly lower than that of the first cycle.Potential degradation mechanisms were also proposed by methanol quenching tests and FT-ICR-MS. 展开更多
关键词 Advanced oxidation three-dimensional electro-Fenton Reduced graphene oxide Acyclovir(ACV) DEGRADATION
原文传递
Design,progress and challenges of 3D carbon-based thermally conductive networks
19
作者 JING Yuan LIU Han-qing +2 位作者 ZHOU Feng DAI Fang-na WU Zhong-shuai 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期844-871,共28页
The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities a... The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed. 展开更多
关键词 Carbon material 3D network graphene Thermal conductivity Heat transfer
下载PDF
A New Three-dimensional Network Constructed by Heptamolybdate, Sodium Ions and Hexamethylene Tetramine Cations via Hydrogen Bonds
20
作者 杨文斌 卢灿忠 庄鸿辉 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2002年第2期168-173,共6页
The crystal structure of the title compound [Na2(OH2)5]2+[C6H12N4H2]2-2+ [Mo7O24]6 ?4H2O, prepared from an aqueous solution of Na2MoO4 ?2H2O in the presence of MoCl3 and hexamethylene tetramine, has been determined by... The crystal structure of the title compound [Na2(OH2)5]2+[C6H12N4H2]2-2+ [Mo7O24]6 ?4H2O, prepared from an aqueous solution of Na2MoO4 ?2H2O in the presence of MoCl3 and hexamethylene tetramine, has been determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group Pnma with a = 14.6113(2), b = 18.6833(1), c = 15.3712(2), V = 4196.14(8)3, Z = 4, Mr = 1548.13, F(000) = 3016, = 2.157 mm-1 and Dc = 2.451 g/cm3. The final R factor is 0.0526 for 3818 unique observed reflections (I > 2(I)). The structural analysis reveals that heptamolybdate anions in the title compound consist of seven edge-sharing MoO6 octahedra, and are linked into a three-dimensional framework by sodium ions and hydrogen bonds. 展开更多
关键词 heptamolybdate compound hydrogen bond three-dimensional network
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部