期刊文献+
共找到2,793篇文章
< 1 2 140 >
每页显示 20 50 100
Three-dimensional turbulent model of heat transfer and fluid flow in GTAW process 被引量:1
1
作者 董志波 徐艳利 +3 位作者 魏艳红 马瑞 王淑娟 翟国富 《China Welding》 EI CAS 2010年第2期23-27,共5页
A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy f... A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results. 展开更多
关键词 heat transfer fluid flow GTAW K-ε turbulent fluid flow model
下载PDF
Numerical Analysis on Temperature Distribution in a Single Cell of PEFC Operated at Higher Temperature by1D Heat Transfer Model and 3D Multi-Physics Simulation Model
2
作者 Akira Nishimura Kyohei Toyoda +1 位作者 Daiki Mishima Eric Hu 《Energy and Power Engineering》 CAS 2023年第5期205-227,共23页
This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf... This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction. 展开更多
关键词 PEFC heat transfer model Temperature Distribution Numerical Simulation High Temperature Operation
下载PDF
Exact analytical solution to three-dimensional phase change heat transfer problems in biological tissues subject to freezing
3
作者 李方方 刘静 乐恺 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第1期63-72,共10页
Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green func... Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change. 展开更多
关键词 three-dimensional phase change heat transfer problem CRYOSURGERY CRYOPRESERVATION moving heat source model bioheat transfer Green's function analytical solution
下载PDF
Modelling Study to Compare the Flow and Heat Transfer Characteristics of Low-Power Hydrogen,Nitrogen and Argon Arc-Heated Thrusters 被引量:5
4
作者 王海兴 陈熙 +3 位作者 潘文霞 A.B.MURPHY 耿金越 贾少霞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第6期692-701,共10页
A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed S... A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, velocity and Mach number distributions calculated within the thruster nozzle obtained with different propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the flow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip; the flow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant flows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, specific enthMpies and thermal conductivities, are different, there are appreciable differences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest specific impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results. 展开更多
关键词 low-power arcjet plasma flow and heat transfer numerical modelling propellant-type effects
下载PDF
Establishment and Application of UFC-ACC Heat Transfer Coefficient Model 被引量:3
5
作者 Tian-Liang Fu Zhao-Dong Wang +2 位作者 Yong Li Jia-Dong Li Guo-Dong Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第2期57-62,共6页
Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficien... Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficients under different roll speed and water volume were calculated by using an inverse heat conduction method. Secondly,a monofactorial heat transfer coefficient calculation formula was obtained. Finally,the heat transfer coefficient model based on medium plate runout table UFC-ACC system was constructed by intercept function,slope function,interaction influence function and linear or nonlinear influencing factors. The precision of these models was validated by comparing model prediction value with measured data,and the results were in good agreement with practical needs,and the average deviation was less than 5%. 展开更多
关键词 medium plate ultra-fast cooling heat transfer coefficient mathematical model
下载PDF
Heat Transfer and Flow Characteristics Predictions with a Refined k-ε-f_u Turbulent Model in Impinging Jet 被引量:1
6
作者 Qinglin Niu Biao Chen +2 位作者 Zhihong He Jianfei Tong Shikui Dong 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第4期9-17,共9页
Local heat transfer and flow characteristics in a round turbulent impinging jet for Re≈23 000 is predicted numerically with the RANS approach and a k-ε-fu turbulence model. The heat transfer predictions and turbulen... Local heat transfer and flow characteristics in a round turbulent impinging jet for Re≈23 000 is predicted numerically with the RANS approach and a k-ε-fu turbulence model. The heat transfer predictions and turbulence parameters are verified against the axis-symmetric free jet impingement measurements and compared with previous other turbulence models, and results show the k-ε-fu model has a good performance in predictions of the local wall heat transfer coefficient, and in agreement with measurements in mean velocity profiles at different radial positions as well. The numerical model is further used to examine the effect of the fully confined impingement jet on the local Nusselt number. Local Nusselt profiles in x and y-centerlines for the target plate over three separation distances are predicted. Compared with the experimental data, the numerical results are accurate in the central domain around the stagnation region and present a consistent structure distribution. 展开更多
关键词 heat transfer IMPINGEMENT flow k-ε-fu TURBULENCE model Nusselt NUMBER
下载PDF
Heat-transfer model on the improvement of continuous casting slab temperature 被引量:1
7
作者 HongmingWang GuirongLi JunjieWang 《Journal of University of Science and Technology Beijing》 CSCD 2004年第1期18-22,共5页
A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field i... A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field in the solidifying slab was calculated which was verified bythe measured slab surface temperature. The influences of the main operating factors includingcasting speed, spray cooling patterns, superheat of melt and slab size on the solidification processwere analyzed and the means of enhancing the slab temperature was brought forward. Raising thecasting speed to 1.3 m/min, controlling the flowrate of secondary cooling water and improving thecooling pattern at the lower segments of secondary cooling zone could improve the slab temperatureeffectively. And the increasing the superheat is adverse to the production of high temperature slab. 展开更多
关键词 heat transfer continuous casting SLAB SOLIDIFICATION mathematical model
下载PDF
Modelling Study on the Plasma Flow and Heat Transfer in a Laminar Arc Plasma Torch Operating at Atmospheric and Reduced Pressure 被引量:1
8
作者 王海兴 陈熙 潘文霞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第2期163-170,共8页
A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found tha... A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found that the calculated flow fields and temperature distributions are quite similar for both cases at a chamber pressure of 1.0 atm and 0.1 atm. A fully developed flow regime could be achieved in the arc constrictor-tube between the cathode and the anode of the plasma torch at 1.0 atm for all the flow rates covered in this study. However the flow field could not reach the fully developed regime at 0.1 atm with a higher flow rate. The arc-root is always attached to the torch anode surface near the upstream end of the anode, i.e. the abruptly expanded part of the torch channel, which is in consistence with experimental observation. The surrounding gas would be entrained from the torch exit into the torch interior due to a comparatively large inner diameter of the anode channel compared to that of the arc constrictor-tube. 展开更多
关键词 non-transferred arc torch plasma flow and heat transfer numerical modelling
下载PDF
Surface-particle-emulsion heat transfer model between fluidized bed and horizontal immersed tube 被引量:1
9
作者 PingWu XuFeng 《Journal of University of Science and Technology Beijing》 CSCD 2002年第2期99-103,共5页
A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by disperse... A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by dispersed particles touching the surface and through theemulsion when the distance from the surface is greater than the diameter of a particle. A film withan adjustable thickness which separates particles from the surface is not introduced in this model.The coverage ratio of particles on the surface is calculated by a stochastic model of particlepacking density on a surface. By comparison of theoretical solutions with experimental data fromsome references, the mathematical model shows better qualitative and quantitative prediction forlocal heat transfer coefficients around a horizontal immersed tube in a fluidized bed. 展开更多
关键词 fluidized bed heat transfer two-phase flow mathematical model
下载PDF
Coupled Transfer of Water and Heat in Red Soil: Experiment and Numerical Modelling 被引量:4
10
作者 HANXIAOFEI LUJUN 《Pedosphere》 SCIE CAS CSCD 2001年第2期123-130,共8页
Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experiment... Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experimental data to predict the coupled transfer. The results show that transport of soil water was affected by temperature gradient, and the largest net water transport was found in the soil column with initial water content of 0.148 m3 m-3. At the same time, temperature changes with the transport of soil water was in a nonlinear shape as heat parameters were function of water content, and the changes of temperature were positively correlated with the net amount of water transported. Numerical modelling results show that the predicted values of temperature distribution were close to the observed values, while the predicted values of water content exhibited limited deviation at both ends of the soil column due to the slight temperature changes at both ends. It was indicated that the model proposed here was applicable. 展开更多
关键词 水热输送 红土 数值模型 土壤物理学
下载PDF
Modeling and Simulation of Heat Transfer in Loaded Continuous Heat Treatment Furnace 被引量:2
11
作者 KANGJin-wu HUANGTian-you PURUSHOTHAMANRadhakrishnan 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期764-768,共5页
Continuous furnaces are widely used in the heat treatment of mass-produced parts. However, the heating up process of parts in continuous furnace is still decided by experience. In this paper the heat transfer in the c... Continuous furnaces are widely used in the heat treatment of mass-produced parts. However, the heating up process of parts in continuous furnace is still decided by experience. In this paper the heat transfer in the continuous furnace is formulated firstly. The heat balance in each zone is discussed and equations are given. Coupled with the model for heat transfer between workpieces and furnace and the heat transfer in the workload as well presented in the former developed CHT-6/ for batch furnaces, a program CHT- for continuous furnaces was developed. The model deals with two typical movements of parts: continuous or step by step. The moving speed of parts and load pattern can be optimized based on the calculated temperature distributions and curves, especially, the fastest heated and slowest-heated temperature-distance profiles. A case study is carried out for the heat treatment of a kind of hook-shaped part. The calculated results are analyzed and in good agreement with the measured ones. 展开更多
关键词 热处理 传热 连续加热炉 建模 热平衡
下载PDF
A coupled model on fluid flow,heat transfer and solidification in continuous casting mold 被引量:2
12
作者 Xu-bin Zhang Wei Chen Li-feng Zhang 《China Foundry》 SCIE 2017年第5期416-420,共5页
Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established ... Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases(steel, slag and air), and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab. 展开更多
关键词 连续的扔 热转移 团结 VOF 模型 新月形状 模子 TP391.99
下载PDF
Optimising Gas Quenching Technology through Modelling of Heat Transfer 被引量:1
13
作者 FiorentChaffotte LindaLefevre +3 位作者 DidierDomergue AymericGoidsteinas XavierDoussot QingfeiZhang 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期758-763,共6页
Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet, the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching... Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet, the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. The configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology. 展开更多
关键词 气体流淬火 传热 冷却速率 热处理
下载PDF
Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
14
作者 郑坤灿 李震东 +2 位作者 曹豫通 刘犇 胡君磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期28-36,共9页
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma... Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae. 展开更多
关键词 silica aerogel effective thermal conductivity two pore-size structure model porous medium heat transfer
下载PDF
Heat Transfer Investigation and Modeling of Heat Integrated Distillation Column 被引量:1
15
作者 Fang Jing Wang Yijing +2 位作者 Su Weiyi Xuan Bihan Li Chunli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第3期96-105,共10页
The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were propos... The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were proposed, through which the overall heat transfer coefficient at different height of column under different operating conditions could be obtained before the experiment. Then the separation of a binary ethanol-water system was carried out experimentally as a case study to verify the heat transfer model and the aforementioned calculation method. The close results between the calculation, the simulation, and the experiments suggested that the proposed model and the calculation method in this paper were accurate and applicable. Meanwhile, it was demonstrated that the HIDiC shows obvious effect of reducing entropy increase and improving thermodynamic efficiency as compared to conventional distillation column. 展开更多
关键词 热转移 蒸馏 模特儿 转移系数 操作条件 热力学 可逆性 熵方法
下载PDF
A Two-Layer Model for Superposed Electrified Maxwell Fluids in Presence of Heat Transfer 被引量:1
16
作者 Kadry Zakaria Magdy A. Sirwah Sameh A. Alkharashi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第6期1077-1094,共18页
基于一个 modified-DarcyMaxwell 模型,二维,不可压缩并且二围住的层的热转移流动,通过触电的麦克斯韦,在多孔的媒介的液体被执行。为在一个电场下面的不稳定性的驱动力,在免费费用上施加的静电的力量在划分接口被积累。正常模式... 基于一个 modified-DarcyMaxwell 模型,二维,不可压缩并且二围住的层的热转移流动,通过触电的麦克斯韦,在多孔的媒介的液体被执行。为在一个电场下面的不稳定性的驱动力,在免费费用上施加的静电的力量在划分接口被积累。正常模式分析被认为学习骚乱层的线性稳定性。有边界条件的运动的线性化的方程的答案导致在生长率和波浪数字之间的一种含蓄的分散关系。这些方程是由威伯数字,雷纳兹数字, Marangoni 数字,无尺寸的传导性,和无尺寸的电的潜力的 parameterized。长波浪的格界面的稳定性被学习了。稳定性标准在在哪个稳定性,图被获得理论上被执行。在限制的格中,一些以前出版的结果能被认为我们的结果的格同样特别。雷纳兹数字在稳定性标准起一个使动摇的作用,这被发现,当抑制影响为增加 Marangoni 数字和麦克斯韦松驰时间被观察时。 展开更多
关键词 麦克斯韦 电气化 传热模型 MARANGONI 流体 Maxwell模型 叠加 静电作用力
下载PDF
THE PREDICTIONS OF CONVECTIVE HEAT TRANSFER ON TURBINE BLADE AIRFOIL BY USING LOW-REYNOLDS NUMBER TURBULENCE MODEL
17
作者 ZhuHuiren,LiuSongling(Department of Aeroengines and Thermal Power Engineering,NorthwesternPolytechnical University),Xi’an,China,710072) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1995年第2期133-144,共12页
THEPREDICTIONSOFCONVECTIVEHEATTRANSFERONTURBINEBLADEAIRFOILBYUSINGLOW-REYNOLDSNUMBERTURBULENCEMODELTHEPREDIC... THEPREDICTIONSOFCONVECTIVEHEATTRANSFERONTURBINEBLADEAIRFOILBYUSINGLOW-REYNOLDSNUMBERTURBULENCEMODELTHEPREDICTIONSOFCONVECTIVE... 展开更多
关键词 turbulence models turbine blades convective heat transfer boundarylayers
下载PDF
CONJUGATE MODEL FOR HEAT AND MASS TRANSFER OF POROUS WALL IN THE HIGH TEMPERATURE GAS FLOW
18
作者 A.F.Polyakov D. L. Reviznikov +2 位作者 沈青 唐锦荣 魏叔如 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第3期245-250,共6页
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration a... Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency. 展开更多
关键词 heat and mass transfer porous media conjugate model high temperature gas flow
下载PDF
Modeling and Numerical Simulation of Heat Transfers in a Metallic Pressure Cooker Isolated with Kapok Wool 被引量:1
19
作者 Drissa Ouedraogo Serge Wendsida Igo +3 位作者 Gael Lassina Sawadogo Abdoulaye Compaore Belkacem Zeghmati Xavier Chesneau 《Modeling and Numerical Simulation of Material Science》 2020年第2期15-30,共16页
In this work, a numerical study of heat transfers in a metallic pressure cooker isolated with kapok wool was carried out. This equipment works like a thermos, allowing finishing cooking meals only thanks to the heat s... In this work, a numerical study of heat transfers in a metallic pressure cooker isolated with kapok wool was carried out. This equipment works like a thermos, allowing finishing cooking meals only thanks to the heat stored at the beginning of cooking, which generates energy savings. Cooked meals are also kept hot for long hours. In our previous work, we have highlighted the performances of the pressure cooker when making common dishes in Burkina Faso. Also, the parameters (thickness and density) of the insulating matrix allowing having such performances as well as the influence of the climatic conditions on the pressure cooker operation were analyzed in detail in this present work. The numerical methodology is based on the nodal method and the transfer equations obtained by making an energy balance on each node have been discretized using an implicit scheme with finite differences and resolved by the Gauss algorithm. Numerical results validated experimentally show that the thickness of the kapok wool as well as its density play an important role in the pressure cooker operation. In addition, equipment performances are very little influenced by the weather conditions of the city of Ouagadougou (Burkina Faso). 展开更多
关键词 Pressure Cooker Kapok Wool heat transfers modelING Nodal Method
下载PDF
A COMPUTER CODE FASTOR-3D FOR TRANSIENT THREE-DIMENSIONAL SIMULATION ON FLOW AND HEAT TRANS-FER WITH POROSITY APPROXIMATION
20
作者 卢万成 邓保庆 席时桐 《Journal of Shanghai Jiaotong university(Science)》 EI 1997年第2期43-46,52,共5页
ACOMPUTERCODEFASTOR┐3DFORTRANSIENTTHREE┐DIMENSIONALSIMULATIONONFLOWANDHEATTRANS┐FERWITHPOROSITYAPPROXIMATION... ACOMPUTERCODEFASTOR┐3DFORTRANSIENTTHREE┐DIMENSIONALSIMULATIONONFLOWANDHEATTRANS┐FERWITHPOROSITYAPPROXIMATION*LuWancheng(卢万成)D... 展开更多
关键词 three-dimensional SIMULATION FLOW and heat transfer POROSITY APPROXIMATION FASTOR3D
下载PDF
上一页 1 2 140 下一页 到第
使用帮助 返回顶部