At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, th...At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.展开更多
Objective To establish a 3D atlas of the lenticular nuclei and its subnucleus with the cryosection images of the male from "Atlas of Chinese Visible Human". Methods The lenticular nuclei and its subnucleus w...Objective To establish a 3D atlas of the lenticular nuclei and its subnucleus with the cryosection images of the male from "Atlas of Chinese Visible Human". Methods The lenticular nuclei and its subnucleus were segmented from the cryosection images and reconstructed with the software展开更多
Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new p...Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.展开更多
Image acquisition stands as a prerequisite for scrutinizing surfaces inspection in industrial high-end manufacturing.Current imaging systems often exhibit inflexibility,being confined to specific objects and encounter...Image acquisition stands as a prerequisite for scrutinizing surfaces inspection in industrial high-end manufacturing.Current imaging systems often exhibit inflexibility,being confined to specific objects and encountering difficulties with diverse industrial structures lacking standardized computer-aided design(CAD)models or in instances of deformation.Inspired by the multidimensional observation of humans,our study introduces a universal image acquisition paradigm tailored for robotics,seamlessly integrating multi-objective optimization trajectory planning and control scheme to harness measured point clouds for versatile,efficient,and highly accurate image acquisition across diverse structures and scenarios.Specifically,we introduce an energybased adaptive trajectory optimization(EBATO)method that combines deformation and deviation with dual-threshold optimization and adaptive weight adjustment to improve the smoothness and accuracy of imaging trajectory and posture.Additionally,a multi-optimization control scheme based on a meta-heuristic beetle antennal olfactory recurrent neural network(BAORNN)is proposed to track the imaging trajectory while addressing posture,obstacle avoidance,and physical constraints in industrial scenarios.Simulations,real-world experiments,and comparisons demonstrate the effectiveness and practicality of the proposed paradigm.展开更多
A graph theory model of the human nature structure( GMH) for machine vision and image/graphics processing is described in this paper. Independent from the motion and deformation of contours,the human nature structure(...A graph theory model of the human nature structure( GMH) for machine vision and image/graphics processing is described in this paper. Independent from the motion and deformation of contours,the human nature structure( HNS) embodies the most basic movement characteristics of the body. The human body can be divided into basic units like head,torso,and limbs. Using these basic units,a graph theory model for the HNS can be constructed. GMH provides a basic model for human posture processing,and the outline in the perspective projection plane is the body contour of an image. In addition,the GMH can be applied to articulated motion and deformable objects,e. g.,in the design and analysis of body posture,by modifying mapping parameters of the GMH.展开更多
Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model compl...Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency.展开更多
OBJECTIVE: To evaluate the diagnostic accuracy of three-dimensional CT angiography in the surgical treatment of intracranial aneurysms. METHODS: Twenty-four patients suspected of intracranial aneurysms underwent routi...OBJECTIVE: To evaluate the diagnostic accuracy of three-dimensional CT angiography in the surgical treatment of intracranial aneurysms. METHODS: Twenty-four patients suspected of intracranial aneurysms underwent routine catheter four-vessel angiography, three dimensional CT angiography (3D-CTA), magnetic resonance angiography (MRA) or conventional digital subtraction angiography (DSA). RESULTS: A total of 28 aneurysms were detected by CT angiography in this study. Twenty-one patients each had a single aneurysm, two patients each had two aneurysms, and one had three aneurysms. The shapes of aneurysms revealed by 3D-CTA were round in 20 lesions, elliptical in 5, and 1 obulated in 3. Of the 24 lesions which were completely disclosed during surgery, the shapes correlated well with the 3D-CT angiograms. The mean diameter of the aneurysmal neck was 5.9 mm in 3D-CTA images, with the smallest being 1.6 mm and the largest 13.7 mm. The size was very close to the actual size measured at surgery (P展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41571417 and 61305042)the National Science Foundation of the United States(Grant Nos.CNS-1253424 and ECCS-1202225)+4 种基金the Science and Technology Foundation of Henan Province,China(Grant No.152102210048)the Foundation and Frontier Project of Henan Province,China(Grant No.162300410196)China Postdoctoral Science Foundation(Grant No.2016M602235)the Natural Science Foundation of Educational Committee of Henan Province,China(Grant No.14A413015)the Research Foundation of Henan University,China(Grant No.xxjc20140006)
文摘At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.
文摘Objective To establish a 3D atlas of the lenticular nuclei and its subnucleus with the cryosection images of the male from "Atlas of Chinese Visible Human". Methods The lenticular nuclei and its subnucleus were segmented from the cryosection images and reconstructed with the software
文摘Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.
基金supported in part by the National Natural Science Foundation of China(62303457,U21A20482)China Postdoctoral Science Foundation(2023M733737)the National Key Research and Development Program of China(2022YFB3303800)。
文摘Image acquisition stands as a prerequisite for scrutinizing surfaces inspection in industrial high-end manufacturing.Current imaging systems often exhibit inflexibility,being confined to specific objects and encountering difficulties with diverse industrial structures lacking standardized computer-aided design(CAD)models or in instances of deformation.Inspired by the multidimensional observation of humans,our study introduces a universal image acquisition paradigm tailored for robotics,seamlessly integrating multi-objective optimization trajectory planning and control scheme to harness measured point clouds for versatile,efficient,and highly accurate image acquisition across diverse structures and scenarios.Specifically,we introduce an energybased adaptive trajectory optimization(EBATO)method that combines deformation and deviation with dual-threshold optimization and adaptive weight adjustment to improve the smoothness and accuracy of imaging trajectory and posture.Additionally,a multi-optimization control scheme based on a meta-heuristic beetle antennal olfactory recurrent neural network(BAORNN)is proposed to track the imaging trajectory while addressing posture,obstacle avoidance,and physical constraints in industrial scenarios.Simulations,real-world experiments,and comparisons demonstrate the effectiveness and practicality of the proposed paradigm.
基金Supported by the National Natural Science Foundation of China(No.71373023,61372148,61571045)Beijing Advanced Innovation Center for Imaging Technology(No.BAICIT-2016002)+1 种基金the National Key Technology R&D Program(No.2014BAK08B02,2015BAH55F03)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.CIT&TCD201504039)
文摘A graph theory model of the human nature structure( GMH) for machine vision and image/graphics processing is described in this paper. Independent from the motion and deformation of contours,the human nature structure( HNS) embodies the most basic movement characteristics of the body. The human body can be divided into basic units like head,torso,and limbs. Using these basic units,a graph theory model for the HNS can be constructed. GMH provides a basic model for human posture processing,and the outline in the perspective projection plane is the body contour of an image. In addition,the GMH can be applied to articulated motion and deformable objects,e. g.,in the design and analysis of body posture,by modifying mapping parameters of the GMH.
基金the National Natural Science Foundation of China,Grant/Award Number:62006065the Science and Technology Research Program of Chongqing Municipal Education Commission,Grant/Award Number:KJQN202100634+1 种基金the Natural Science Foundation of Chongqing,Grant/Award Number:CSTB2022NSCQ‐MSX1202Chongqing Municipal Education Commission,Grant/Award Number:KJQN202100634。
文摘Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency.
文摘OBJECTIVE: To evaluate the diagnostic accuracy of three-dimensional CT angiography in the surgical treatment of intracranial aneurysms. METHODS: Twenty-four patients suspected of intracranial aneurysms underwent routine catheter four-vessel angiography, three dimensional CT angiography (3D-CTA), magnetic resonance angiography (MRA) or conventional digital subtraction angiography (DSA). RESULTS: A total of 28 aneurysms were detected by CT angiography in this study. Twenty-one patients each had a single aneurysm, two patients each had two aneurysms, and one had three aneurysms. The shapes of aneurysms revealed by 3D-CTA were round in 20 lesions, elliptical in 5, and 1 obulated in 3. Of the 24 lesions which were completely disclosed during surgery, the shapes correlated well with the 3D-CT angiograms. The mean diameter of the aneurysmal neck was 5.9 mm in 3D-CTA images, with the smallest being 1.6 mm and the largest 13.7 mm. The size was very close to the actual size measured at surgery (P