The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ...The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.展开更多
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu...Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.展开更多
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ...Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.展开更多
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap...Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f...Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi...Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.展开更多
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil...Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale.展开更多
Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3...Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3DGait)represented by a set of interpretable 3DGait descriptors based on a 3D parametric body model.The 3DGait descriptors are utilised as invariant gait features in the 3DGait recognition method to address object carrying and dressing.The 3DGait recognitionmethod involves 2-dimensional(2D)to 3DGaitdata learningbasedon3Dvirtual samples,a semantic gait parameter estimation Long Short Time Memory(LSTM)network(3D-SGPE-LSTM),a feature fusion deep model based on a multi-set canonical correlation analysis,and SoftMax recognition network.First,a sensory experiment based on 3D body shape and pose deformation with 3D virtual dressing is used to fit 3DGait onto the given 2D gait images.3Dinterpretable semantic parameters control the 3D morphing and dressing involved.Similarity degree measurement determines the semantic descriptors of 2D gait images of subjects with various shapes,poses and styles.Second,using the 2D gait images as input and the subjects’corresponding 3D semantic descriptors as output,an end-to-end 3D-SGPE-LSTM is constructed and trained.Third,body shape,pose and external gait factors(3D-eFactors)are estimated using the 3D-SGPE-LSTM model to create a set of interpretable gait descriptors to represent the 3DGait Model,i.e.,3D intrinsic semantic shape descriptor(3DShape);3D skeleton-based gait pose descriptor(3D-Pose)and 3D dressing with other 3D-eFators.Finally,the 3D-Shape and 3D-Pose descriptors are coupled to a unified pattern space by learning prior knowledge from the 3D-eFators.Practical research on CASIA B,CMU MoBo,TUM GAID and GPJATK databases shows that 3DGait is robust against object carrying and dressing variations,especially under multi-cross variations.展开更多
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.Ho...Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification.展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular compon...BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.展开更多
Bovine tuberculosis (bTB) is an endemic zoonosis significantly affects animal health in Burkina Faso. The primary causative agent is Mycobacterium tuberculosis (M. tuberculosis) complex, mainly M. bovis. Cattle are co...Bovine tuberculosis (bTB) is an endemic zoonosis significantly affects animal health in Burkina Faso. The primary causative agent is Mycobacterium tuberculosis (M. tuberculosis) complex, mainly M. bovis. Cattle are considered as natural reservoir of M. bovis. However, in Burkina Faso, the circulation of these strains remains poorly understood and documented. This study aimed to identify and characterize Mycobacterium strains from suspected carcasses during routine meat inspection at Bobo-Dioulasso refrigerated slaughterhouse. A prospective cross-sectional study was conducted from January 2021 to December 2022 on cases of seizures linked to suspected bovine tuberculosis. Microbiological and molecular analyzes were used for mycobacterial strain isolation and characterization. Out of 50 samples, 24% tested positive by microscopy and 12% by culture. Molecular analysis identified 6 strains of Mycobacteria, exclusively Mycobacterium bovis specifically the subspecies bovis (Mycobacterium bovis subsp bovis). In conclusion, M. bovis subsp bovis is the primary agent responsible for bovine tuberculosis in Bobo-Dioulasso. Continuous monitoring of mycobacterial strains is therefore necessary for the effective control of this pathology in the local cattle population.展开更多
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta...This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.展开更多
A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well...A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.展开更多
BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,e...BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.展开更多
The intricate distribution of oil and water in tight rocks makes pinpointing oil layers challenging.While conventional identification methods offer potential solutions,their limited accuracy precludes them from being ...The intricate distribution of oil and water in tight rocks makes pinpointing oil layers challenging.While conventional identification methods offer potential solutions,their limited accuracy precludes them from being effective in their applications to unconventional reservoirs.This study employed nuclear magnetic resonance(NMR)spectrum decomposition to dissect the NMR T_(2)spectrum into multiple subspectra.Furthermore,it employed laboratory NMR experiments to ascertain the fluid properties of these sub-spectra,aiming to enhance identification accuracy.The findings indicate that fluids of distinct properties overlap in the T_(2)spectra,with bound water,movable water,bound oil,and movable oil appearing sequentially from the low-value zone to the high-value zone.Consequently,an oil layer classification scheme was proposed,which considers the physical properties of reservoirs,oil-bearing capacity,and the characteristics of both mobility and the oil-water two-phase flow.When applied to tight oil layer identification,the scheme's outcomes align closely with actual test results.A horizontal well,deployed based on these findings,has produced high-yield industrial oil flow,underscoring the precision and dependability of this new approach.展开更多
Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2022D01A330)the CNPC (China National Petroleum Corporation)Scientific Research and Technology Development Project (Grant No.2021DJ1501)+1 种基金National Natural Science Foundation Project (No.52274030)“Tianchi Talent”Introduction Plan of Xinjiang Uygur Autonomous Region (2022).
文摘The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.
基金Project supported by the National Natural Science Foundation of China (No. 12072337)。
文摘Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.
基金supported by the National Natural Science Foundation of China (No. 52275291)the Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province,China (No. 2023-CX-TD-17)
文摘Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.
基金This work was supported by grants fromthe Sichuan Science and Technology Program(2023NSFSC1877).
文摘Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金the Competitive Research Fund of the University of Aizu,Japan.
文摘Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.
基金Supported by the National Natural Science Foundation(42202133,42072174,42130803,41872148)PetroChina Science and Technology Innovation Fund(2023DQ02-0106)PetroChina Basic Technology Project(2021DJ0101).
文摘Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale.
基金funded by the Research Foundation of Education Bureau of Hunan Province,China,under Grant Number 21B0060the National Natural Science Foundation of China,under Grant Number 61701179.
文摘Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3DGait)represented by a set of interpretable 3DGait descriptors based on a 3D parametric body model.The 3DGait descriptors are utilised as invariant gait features in the 3DGait recognition method to address object carrying and dressing.The 3DGait recognitionmethod involves 2-dimensional(2D)to 3DGaitdata learningbasedon3Dvirtual samples,a semantic gait parameter estimation Long Short Time Memory(LSTM)network(3D-SGPE-LSTM),a feature fusion deep model based on a multi-set canonical correlation analysis,and SoftMax recognition network.First,a sensory experiment based on 3D body shape and pose deformation with 3D virtual dressing is used to fit 3DGait onto the given 2D gait images.3Dinterpretable semantic parameters control the 3D morphing and dressing involved.Similarity degree measurement determines the semantic descriptors of 2D gait images of subjects with various shapes,poses and styles.Second,using the 2D gait images as input and the subjects’corresponding 3D semantic descriptors as output,an end-to-end 3D-SGPE-LSTM is constructed and trained.Third,body shape,pose and external gait factors(3D-eFactors)are estimated using the 3D-SGPE-LSTM model to create a set of interpretable gait descriptors to represent the 3DGait Model,i.e.,3D intrinsic semantic shape descriptor(3DShape);3D skeleton-based gait pose descriptor(3D-Pose)and 3D dressing with other 3D-eFators.Finally,the 3D-Shape and 3D-Pose descriptors are coupled to a unified pattern space by learning prior knowledge from the 3D-eFators.Practical research on CASIA B,CMU MoBo,TUM GAID and GPJATK databases shows that 3DGait is robust against object carrying and dressing variations,especially under multi-cross variations.
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
基金funded by the National Natural Science Foundation of China under Grant No.62002103Henan Province Science Foundation for Youths No.222300420058+1 种基金Henan Province Science and Technology Research Project No.232102321064Teacher Education Curriculum Reform Research Priority Project No.2023-JSJYZD-011.
文摘Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
文摘BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.
文摘Bovine tuberculosis (bTB) is an endemic zoonosis significantly affects animal health in Burkina Faso. The primary causative agent is Mycobacterium tuberculosis (M. tuberculosis) complex, mainly M. bovis. Cattle are considered as natural reservoir of M. bovis. However, in Burkina Faso, the circulation of these strains remains poorly understood and documented. This study aimed to identify and characterize Mycobacterium strains from suspected carcasses during routine meat inspection at Bobo-Dioulasso refrigerated slaughterhouse. A prospective cross-sectional study was conducted from January 2021 to December 2022 on cases of seizures linked to suspected bovine tuberculosis. Microbiological and molecular analyzes were used for mycobacterial strain isolation and characterization. Out of 50 samples, 24% tested positive by microscopy and 12% by culture. Molecular analysis identified 6 strains of Mycobacteria, exclusively Mycobacterium bovis specifically the subspecies bovis (Mycobacterium bovis subsp bovis). In conclusion, M. bovis subsp bovis is the primary agent responsible for bovine tuberculosis in Bobo-Dioulasso. Continuous monitoring of mycobacterial strains is therefore necessary for the effective control of this pathology in the local cattle population.
基金partially supported by the Natural Science Foundation of China (Grant Nos.62103052,52272358)partially supported by the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.
基金Supported by Shanghai Municipal Science and Technology Program (Grant No.21511101701)National Key Research and Development Program of China (Grant No.2021YFC0122704)。
文摘A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.
基金Supported by National Natural Science Foundation of China,No.82293665Anhui Provincial Department of Education University Research Project,No.2023AH051763.
文摘BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.
基金funded by a major special project of PetroChina Company Limited(No.2021DJ1003No.2023ZZ2).
文摘The intricate distribution of oil and water in tight rocks makes pinpointing oil layers challenging.While conventional identification methods offer potential solutions,their limited accuracy precludes them from being effective in their applications to unconventional reservoirs.This study employed nuclear magnetic resonance(NMR)spectrum decomposition to dissect the NMR T_(2)spectrum into multiple subspectra.Furthermore,it employed laboratory NMR experiments to ascertain the fluid properties of these sub-spectra,aiming to enhance identification accuracy.The findings indicate that fluids of distinct properties overlap in the T_(2)spectra,with bound water,movable water,bound oil,and movable oil appearing sequentially from the low-value zone to the high-value zone.Consequently,an oil layer classification scheme was proposed,which considers the physical properties of reservoirs,oil-bearing capacity,and the characteristics of both mobility and the oil-water two-phase flow.When applied to tight oil layer identification,the scheme's outcomes align closely with actual test results.A horizontal well,deployed based on these findings,has produced high-yield industrial oil flow,underscoring the precision and dependability of this new approach.
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.