Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact...In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.展开更多
This study aims to explore the application of digital technology in landscape design,focusing on the research of virtual reality visualization and interactive design in the process of plant configuration.Through an in...This study aims to explore the application of digital technology in landscape design,focusing on the research of virtual reality visualization and interactive design in the process of plant configuration.Through an in-depth analysis of digital technology,the study outlines its important role in landscape design,especially in the application of plant configuration.The current application status of virtual reality technology in landscape design is discussed,as well as how interactive design can enhance user experience and participation.Furthermore,the achievements and challenges of digital technology in landscape design are summarized.Finally,it proposes future research directions and suggestions,aiming to provide new ideas and methods for practice and research in the field of landscape design and promote the further application and development of digital technology in landscape design.展开更多
To improve the human-physical-virtual coordination and integration of the digital twin workshop,3D visual monitoring and human-computer interaction of the digital twin workshop was studied.First,a novel 6D model of th...To improve the human-physical-virtual coordination and integration of the digital twin workshop,3D visual monitoring and human-computer interaction of the digital twin workshop was studied.First,a novel 6D model of the 3D visualization interactive system for digital twin workshops is proposed.As the traditional 5D digital twin model ignores the importance of human-computer interaction,a new dimension of the user terminal was added.A hierarchical real-time data-driven mapping model for the workshop production process is then proposed.Moreover,a real-time data acquisition method for the industrial Internet of things is proposed based on OPC UA(object linking and embedding for process control unified architecture).Based on the 6D model of the system,the process of creating a 3D visualization virtual environment based on virtual reality is introduced,in addition to a data-driven process based on the data management cloud platform.Finally,the 6D model of the system was confirmed using the blade rotor test workshop as the object,and a 3D visualization interactive system is developed.The results show that the system is more transparent,real-time,data-driven and more efficient,as well as promotes the coordination and integration of human-physical-virtual,which has practical significance for developing digital twin workshops.展开更多
The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is devel- oped i...The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is devel- oped in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.展开更多
Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regressio...Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.展开更多
Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tur...Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.展开更多
Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,...Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.展开更多
This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virt...This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virtual Reality (VR) and Augmented Reality (AR) technologies to achieve more natural and intuitive interaction models through NLP techniques. Through experiments and data analysis across multiple technical models, this study proposes an innovative design solution based on natural language interaction and summarizes its advantages and limitations in immersive experiences.展开更多
In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-di...In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling.展开更多
“Alone together”is an ever-changing“wicked problem.”In this research and practice,the author tries to combine experience design,referring to the theory of“interaction ritual chain theory,”and creatively add inte...“Alone together”is an ever-changing“wicked problem.”In this research and practice,the author tries to combine experience design,referring to the theory of“interaction ritual chain theory,”and creatively add interactive experience to discursive works,so that the audience can think between the real and the virtual.展开更多
This paper focuses on the application of interactive media technology in the visual interpretation of traditional graphic urban public spaces in China.Case studies and practical exploration show that interactive media...This paper focuses on the application of interactive media technology in the visual interpretation of traditional graphic urban public spaces in China.Case studies and practical exploration show that interactive media technologies such as projection mapping,interactive devices,virtual reality technology,etc.,have realized the diversity of traditional graphics display forms in urban public space.The rich interactive experience design enhances the sense of participation and experience of urban citizens and tourists and promotes the visual culture transmission of traditional Chinese graphics.The future urban public space exhibition is destined to continue to deepen the integration of technology and graphics,promote the visual communication of traditional Chinese graphics visual interpretation in urban public space,and promote sustainable innovation in cultural output in urban public space exhibitions around the world.展开更多
With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garag...With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garage for electric bicycles. This paper designed a hollow tower electric bicycle stereo parking garage with fork comb structure, based on the analysis of the characteristics of electric bicycles and the characteristics of existing three-dimensional garages. A fixed comb is mounted on the garage frame. The movable comb is mounted on the middle lift mechanism of the garage. The access of the vehicle is achieved by the exchange of the comb. The key comb structure was modeled using SolidWorks software and the stress distribution of the structure was analyzed. It was optimized by MATLAB software. The result shows that this structure can improve access efficiency. The quality of the comb structure can be minimized under the constraints of strength requirements.展开更多
We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-...We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-air.By changing the phase difference of transducer arrays,three-dimensional manipulation of particles is successfully realized.Moreover,the relationship between the translation of particles and the phase difference is experimentally investigated,and the result is in agreement with the theoretical calculation.This design can expand the application of acoustic levitation in many fields,such as biomedicine,ultrasonic motor and new materials processing.展开更多
Virtually all conventional optimizations are Performed in a batch computer environment. No graphic information during the optimization process is provided. The research tactics and implementation procedure of interact...Virtually all conventional optimizations are Performed in a batch computer environment. No graphic information during the optimization process is provided. The research tactics and implementation procedure of interactivegraphics in mechanical optimum design are presented. An interactive Graphics Mechanical Optimum Design Program(IGMODP) for microcomputers is developed. The example of wheeled loader' s working device optimum design usingIGMODP is carried out.展开更多
Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the e...Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the ecological environment. The interaction between nano-TiO2 and bovine serum albumin (BSA) was studied by using TDFS and UV methods in this research.展开更多
Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect desig...Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect design window for a giga-scale system-on-chip (SOC) is established by evaluating the constraints of 1) wiring resource, 2) wiring bandwidth, and 3) wiring noise. In comparison to a two-dimensional integrated circuit (2D IC) in a 130-nm and 45-nm technology node, the design window expands for a 3D IC to improve the design reliability and system performance, further supporting 3D IC application in future integrated circuit design.展开更多
The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, ...The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.展开更多
Interactive learning tools can facilitate the learning process and increase student engagement,especially tools such as computer programs that are designed for human-computer interaction.Thus,this paper aims to help s...Interactive learning tools can facilitate the learning process and increase student engagement,especially tools such as computer programs that are designed for human-computer interaction.Thus,this paper aims to help students learn five different methods for solving nonlinear equations using an interactive learning tool designed with common principles such as feedback,visibility,affordance,consistency,and constraints.It also compares these methods by the number of iterations and time required to display the result.This study helps students learn these methods using interactive learning tools instead of relying on traditional teaching methods.The tool is implemented using the MATLAB app and is evaluated through usability testing with two groups of users that are categorized by their level of experience with root-finding.Users with no knowledge in root-finding confirmed that they understood the root-finding concept when interacting with the designed tool.The positive results of the user evaluation showed that the tool can be recommended to other users.展开更多
<span style="font-family:Verdana;">A creative and/or innovative computer aided design environment is developed around the concept of an evolutionary optimization algorithm. Designs are generated within...<span style="font-family:Verdana;">A creative and/or innovative computer aided design environment is developed around the concept of an evolutionary optimization algorithm. Designs are generated within a set of prescribed design frameworks using a problem specific encoding and modified through operations including recombination, crossover and mutation. Evaluation of all candidate designs is performed by a user through a graphical user interface. A set of problems involving the creation of graphic images is presented. The examples include the generation of a set of two dimensional polygonal shapes, fractal images, path generation from a multi-degree freedom mechanical planar linkage and a mathematically pre</span><span style="font-family:Verdana;">scribed pattern generation from a graphic design application utilized in</span><span style="font-family:Verdana;"> quilting. Post design evaluation of the user input to the process provides insight into the individuals design strategy as well as determination of common user attributes in the creative design process.</span>展开更多
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.
文摘In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.
基金2023 Campus Scientific Research Fund of Chongqing Institute of Engineering(Project number:2023xsky03)2023 Education and Teaching Reform Research Project of Chongqing Institute of Engineering(Project number:JY2023214)2023 First-class Curriculum Construction Project of Chongqing Institute of Engineering(Project number:KC20230103)。
文摘This study aims to explore the application of digital technology in landscape design,focusing on the research of virtual reality visualization and interactive design in the process of plant configuration.Through an in-depth analysis of digital technology,the study outlines its important role in landscape design,especially in the application of plant configuration.The current application status of virtual reality technology in landscape design is discussed,as well as how interactive design can enhance user experience and participation.Furthermore,the achievements and challenges of digital technology in landscape design are summarized.Finally,it proposes future research directions and suggestions,aiming to provide new ideas and methods for practice and research in the field of landscape design and promote the further application and development of digital technology in landscape design.
基金The National Natural Science Foundation of China(No.51875332)the Capacity Building Projects of Some Local Universities of Shanghai Science and Technology Commission(No.18040501600).
文摘To improve the human-physical-virtual coordination and integration of the digital twin workshop,3D visual monitoring and human-computer interaction of the digital twin workshop was studied.First,a novel 6D model of the 3D visualization interactive system for digital twin workshops is proposed.As the traditional 5D digital twin model ignores the importance of human-computer interaction,a new dimension of the user terminal was added.A hierarchical real-time data-driven mapping model for the workshop production process is then proposed.Moreover,a real-time data acquisition method for the industrial Internet of things is proposed based on OPC UA(object linking and embedding for process control unified architecture).Based on the 6D model of the system,the process of creating a 3D visualization virtual environment based on virtual reality is introduced,in addition to a data-driven process based on the data management cloud platform.Finally,the 6D model of the system was confirmed using the blade rotor test workshop as the object,and a 3D visualization interactive system is developed.The results show that the system is more transparent,real-time,data-driven and more efficient,as well as promotes the coordination and integration of human-physical-virtual,which has practical significance for developing digital twin workshops.
文摘The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is devel- oped in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.
基金supported by the Ministry of Science and Technology of China (2010DFA32680)the National Natural Science Foundation of China (21005062)the Fundamental Research Funds for the Central Universities (CDJRC10220010)
文摘Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.
基金supported in part by the General Program of Natural Science Foundation of Hubei Province,China(Grant No.2020CFB548)a Project in 2021 of Science and Technology Support Plan of Guizhou Province,China(Grant No.202158413293820389).
文摘Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.
基金This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0103 and 2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.91837208 and 42075085).
文摘Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.
文摘This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virtual Reality (VR) and Augmented Reality (AR) technologies to achieve more natural and intuitive interaction models through NLP techniques. Through experiments and data analysis across multiple technical models, this study proposes an innovative design solution based on natural language interaction and summarizes its advantages and limitations in immersive experiences.
基金supported by the State Key Program of National Natural Science of China(Grant No.41130637)
文摘In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling.
文摘“Alone together”is an ever-changing“wicked problem.”In this research and practice,the author tries to combine experience design,referring to the theory of“interaction ritual chain theory,”and creatively add interactive experience to discursive works,so that the audience can think between the real and the virtual.
文摘This paper focuses on the application of interactive media technology in the visual interpretation of traditional graphic urban public spaces in China.Case studies and practical exploration show that interactive media technologies such as projection mapping,interactive devices,virtual reality technology,etc.,have realized the diversity of traditional graphics display forms in urban public space.The rich interactive experience design enhances the sense of participation and experience of urban citizens and tourists and promotes the visual culture transmission of traditional Chinese graphics.The future urban public space exhibition is destined to continue to deepen the integration of technology and graphics,promote the visual communication of traditional Chinese graphics visual interpretation in urban public space,and promote sustainable innovation in cultural output in urban public space exhibitions around the world.
基金supported by Supported by National Natural Science Fund(U1704156)
文摘With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garage for electric bicycles. This paper designed a hollow tower electric bicycle stereo parking garage with fork comb structure, based on the analysis of the characteristics of electric bicycles and the characteristics of existing three-dimensional garages. A fixed comb is mounted on the garage frame. The movable comb is mounted on the middle lift mechanism of the garage. The access of the vehicle is achieved by the exchange of the comb. The key comb structure was modeled using SolidWorks software and the stress distribution of the structure was analyzed. It was optimized by MATLAB software. The result shows that this structure can improve access efficiency. The quality of the comb structure can be minimized under the constraints of strength requirements.
基金Supported by the Beijing College Students’Innovation and Entrepreneurship Training Program under Grant No BJ17040
文摘We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-air.By changing the phase difference of transducer arrays,three-dimensional manipulation of particles is successfully realized.Moreover,the relationship between the translation of particles and the phase difference is experimentally investigated,and the result is in agreement with the theoretical calculation.This design can expand the application of acoustic levitation in many fields,such as biomedicine,ultrasonic motor and new materials processing.
文摘Virtually all conventional optimizations are Performed in a batch computer environment. No graphic information during the optimization process is provided. The research tactics and implementation procedure of interactivegraphics in mechanical optimum design are presented. An interactive Graphics Mechanical Optimum Design Program(IGMODP) for microcomputers is developed. The example of wheeled loader' s working device optimum design usingIGMODP is carried out.
基金Suppoted by National Nature Science Foundation of China (Grant Nos. 41130746, 41272371)the Doctor Foundation of SWUST of China (Grant No. 11zx7139)
文摘Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the ecological environment. The interaction between nano-TiO2 and bovine serum albumin (BSA) was studied by using TDFS and UV methods in this research.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60725415 and 60676009)the Natural Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZX01034-002-001-005)
文摘Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect design window for a giga-scale system-on-chip (SOC) is established by evaluating the constraints of 1) wiring resource, 2) wiring bandwidth, and 3) wiring noise. In comparison to a two-dimensional integrated circuit (2D IC) in a 130-nm and 45-nm technology node, the design window expands for a 3D IC to improve the design reliability and system performance, further supporting 3D IC application in future integrated circuit design.
基金Supported by the National Natural Science Foundation of China (No. 40071071).
文摘The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.
文摘Interactive learning tools can facilitate the learning process and increase student engagement,especially tools such as computer programs that are designed for human-computer interaction.Thus,this paper aims to help students learn five different methods for solving nonlinear equations using an interactive learning tool designed with common principles such as feedback,visibility,affordance,consistency,and constraints.It also compares these methods by the number of iterations and time required to display the result.This study helps students learn these methods using interactive learning tools instead of relying on traditional teaching methods.The tool is implemented using the MATLAB app and is evaluated through usability testing with two groups of users that are categorized by their level of experience with root-finding.Users with no knowledge in root-finding confirmed that they understood the root-finding concept when interacting with the designed tool.The positive results of the user evaluation showed that the tool can be recommended to other users.
文摘<span style="font-family:Verdana;">A creative and/or innovative computer aided design environment is developed around the concept of an evolutionary optimization algorithm. Designs are generated within a set of prescribed design frameworks using a problem specific encoding and modified through operations including recombination, crossover and mutation. Evaluation of all candidate designs is performed by a user through a graphical user interface. A set of problems involving the creation of graphic images is presented. The examples include the generation of a set of two dimensional polygonal shapes, fractal images, path generation from a multi-degree freedom mechanical planar linkage and a mathematically pre</span><span style="font-family:Verdana;">scribed pattern generation from a graphic design application utilized in</span><span style="font-family:Verdana;"> quilting. Post design evaluation of the user input to the process provides insight into the individuals design strategy as well as determination of common user attributes in the creative design process.</span>